Partner Perspectives  Connecting marketers to our tech communities.
SPONSORED BY
9/13/2017
09:00 AM
Craig Dods
Craig Dods
Partner Perspectives
Connect Directly
Twitter
RSS
50%
50%

Detection, Prevention & the Single-Vendor Syndrome

Why security teams need to integrate 'Defense in Depth' principles into traditional solutions designed with integration and continuity in mind.

It’s a controversial statement, particularly when it comes from a security vendor, but it must be said: No single vendor can adequately protect your enterprise from all of today’s threats, let alone what might be on the horizon.

There is a misconception today that "complete prevention" is a realistic goal for an enterprise security program. As an adversary’s level of sophistication increases, the ability and efficacy of a single product at preventing arbitrary intrusions begins to decrease dramatically. As a result, security teams need to adopt a new mantra:  Given sufficient time, motivation, and funding, a sufficiently capable adversary will find their way into your organization, regardless of the tools that you have deployed.

One can simply recall the tale of djbdns and how its touted impenetrable "secure code" written by cryptographer Daniel J. Bernstein, failed to stand up to focused scrutiny. The story, as reported by The Register in 2009, is a cautionary tale about assumptions that organizations continue to make about the vulnerabilities of many devices and applications running on the typical enterprise network.

Knowing that the development of a perfectly secure application, system, or device is effectively impossible, we must shift our focus from "prevention” towards "rapid detection, coordination, and response." 

Regardless of market buzzwords, all vendors try to accomplish the same end goals by leveraging similar techniques and technologies. As discussed at this year’s BlackHat by Lidia Giuliano and Mike Spaulding (Lies, and Damn Lies), unsurprisingly, each vendor, based on their unique implementations,  have certain strengths and weaknesses, depending on the type of attack or technique being tested.

Consider the following scenario:

  • Product “A” may be able to detect attack “x”
  • Product “B” may be able to detect behavior "y"
  • Product "C" is unable to detect either "x" or "y," but is best positioned within the network to take the most effective action against the attacker
  • As is typical in the modern enterprise, Product A, B, and C are managed by separate teams and do not share the same reporting or communication structure.

This is a scenario to which many enterprises are now being exposed to, generally for the first time during post-breach incident response and forensics. Tools that they may have had in place detected portions of the attacker’s activity, but none were able to combine their results together to take effective action against the intruder in a timely fashion.

As a result, security teams are beginning to realize that due to the overwhelming volume and increasing sophistication of the modern threat landscape, they must now combine the proverbial "Defense in Depth" principle with solutions that are designed with integration and continuity in mind.  This means they need to prioritize partnering with companies whose cybersecurity offerings are open in nature and seamlessly augment security operations with automated detection, enforcement and remediation. Only in doing so can they maximize their chances of success against a motivated attacker.

Craig Dods is the Chief Architect for Security within Juniper Networks' Strategic Verticals. He currently maintains top-level industry certifications, holds multiple networking and security-related patents, and has disclosed multiple critical-level CVE's in a responsible ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Russia Hacked Clinton's Computers Five Hours After Trump's Call
Robert Lemos, Technology Journalist/Data Researcher,  4/19/2019
Tips for the Aftermath of a Cyberattack
Kelly Sheridan, Staff Editor, Dark Reading,  4/17/2019
Why We Need a 'Cleaner Internet'
Darren Anstee, Chief Technology Officer at Arbor Networks,  4/19/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-11486
PUBLISHED: 2019-04-23
The Siemens R3964 line discipline driver in drivers/tty/n_r3964.c in the Linux kernel before 5.0.8 has multiple race conditions.
CVE-2019-11487
PUBLISHED: 2019-04-23
The Linux kernel before 5.1-rc5 allows page->_refcount reference count overflow, with resultant use-after-free issues, if about 140 GiB of RAM exists. This is related to fs/fuse/dev.c, fs/pipe.c, fs/splice.c, include/linux/mm.h, include/linux/pipe_fs_i.h, kernel/trace/trace.c, mm/gup.c, and mm/hu...
CVE-2018-7576
PUBLISHED: 2019-04-23
Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent.
CVE-2018-8825
PUBLISHED: 2019-04-23
Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local).
CVE-2019-10688
PUBLISHED: 2019-04-23
VVX products using UCS software version 5.8.0 and earlier with Better Together over Ethernet Connector (BToE) application version 3.8.0 and earlier uses hard-coded credentials to establish a connection between the host application and device.