Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Partner Perspectives  Connecting marketers to our tech communities.
4/7/2015
10:00 AM
Rishi Bhargava
Rishi Bhargava
Partner Perspectives
100%
0%

Containing Security

How to identify the appropriate security for your container-based virtual applications.

Virtual machines and containers are similar but distinct ways of virtualizing infrastructure to deploy applications. And they have similar but distinct needs for securing those applications.

Virtual machines are the most separate and secure method of virtualizing hardware, enforced by hardware. Each virtual machine is an instance of the whole operating system, providing all of the services and consuming all of the necessary resources. VMs talk to each other on the same hardware via network interfaces as if they were separate machines, and they have nothing in common except the bare hardware they run on. Hardware assists for virtualization further isolate the processor resources, physical memory, interrupt management, and data I/O between machine instances. Securing a virtual machine is like securing a physical machine. Security policies, firewalls, and intrusion detection and prevention all see each VM as a separate instance and are configured accordingly.

Containers are a hybrid between a single operating system and a virtual machine. Multiple containers run in a single instance of an operating system, but each has its own network stack, file space, and process stack. They also communicate with each other via network interfaces, but they do not yet have hardware assists for hardware-level isolation. With only one version of the operating system, the same hardware will support more containers than virtual machines -- two to five times as many or more, depending on the container requirements. However, containers can be granted additional privileges, accidentally or intentionally, that weaken the walls between containers as well as the underlying operating system.

One of the safest features of containers is running them without full root privilege. Applications running in containers should be fully functional without all of the powerful tools available as root privileges such as access to unrestricted disk, network, and process operations. This means that should some malware manage to modify itself to root level within a container, it does not have unrestricted access to the rest of the machine. Similarly, make sure that each container is spawned in its own root directory, without access to the hardware root directory. This restriction, however, is only effective if there are no privilege escalation vulnerabilities in the operating system or container base code.

Beware of Security Holes

Containers can be configured to expose and share ports and files directly with another container. This is a very useful tool for efficiently passing information between applications, but it opens up a potential security hole. A further recommendation for secure containers is to only run applications on the same machine that you would run without containers. Do not mix data types, privilege levels, or user namespaces across multiple containers on the same machine. Containers provide additional separation between applications and should be considered an additional security measure, not a replacement.

Virtualization enabled the cloud-computing revolution. The fact that these environments are isolated at the hardware level creates the perfect environment for multitenant scenarios. Sensitive workloads from two different customers can be running on the same hardware without any compliance or security compromise, keeping customers comfortable with cloud deployments.

Containers do not currently provide this level of isolation. The weaker separation between containers creates security and compliance challenges when running workloads from different customers. As a result, it is vital to understand the security implications if you are using containers for multitenant scenarios.

The increasing use of containers and other software-defined virtualization tools continues to increase the agility of data center operations. Security configuration and management now needs to match that agility, demonstrating the emerging need for software-defined security, which I will cover in more detail in the next post. 

Rishi Bhargava is co-founder and vice president, marketing for Demisto, a cybersecurity startup with the mission to make security operations "faster, leaner and smarter." Prior to founding Demisto, he was vice president and general manager of the software defined datacenter ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
7 Truths About BEC Scams
Ericka Chickowski, Contributing Writer,  6/13/2019
DNS Firewalls Could Prevent Billions in Losses to Cybercrime
Curtis Franklin Jr., Senior Editor at Dark Reading,  6/13/2019
Can Your Patching Strategy Keep Up with the Demands of Open Source?
Tim Mackey, Principal Security Strategist, CyRC, at Synopsys,  6/18/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Building and Managing an IT Security Operations Program
As cyber threats grow, many organizations are building security operations centers (SOCs) to improve their defenses. In this Tech Digest you will learn tips on how to get the most out of a SOC in your organization - and what to do if you can't afford to build one.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-1874
PUBLISHED: 2019-06-20
A vulnerability in the web-based management interface of Cisco Prime Service Catalog Software could allow an unauthenticated, remote attacker to conduct a cross-site request forgery (CSRF) attack on an affected system. The vulnerability is due to insufficient CSRF protection mechanisms on the web-ba...
CVE-2019-1875
PUBLISHED: 2019-06-20
A vulnerability in the web-based management interface of Cisco Prime Service Catalog could allow an authenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a user of the web-based interface. The vulnerability is due to insufficient validation of user-supplied input by t...
CVE-2019-1876
PUBLISHED: 2019-06-20
A vulnerability in the HTTPS proxy feature of Cisco Wide Area Application Services (WAAS) Software could allow an unauthenticated, remote attacker to use the Central Manager as an HTTPS proxy. The vulnerability is due to insufficient authentication of proxy connection requests. An attacker could exp...
CVE-2019-1878
PUBLISHED: 2019-06-20
A vulnerability in the Cisco Discovery Protocol (CDP) implementation for the Cisco TelePresence Codec (TC) and Collaboration Endpoint (CE) Software could allow an unauthenticated, adjacent attacker to inject arbitrary shell commands that are executed by the device. The vulnerability is due to insuff...
CVE-2019-1879
PUBLISHED: 2019-06-20
A vulnerability in the CLI of Cisco Integrated Management Controller (IMC) could allow an authenticated, local attacker to inject arbitrary commands that are executed with root privileges. The vulnerability is due to insufficient validation of user-supplied input at the CLI. An attacker could exploi...