Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Partner Perspectives  Connecting marketers to our tech communities.
SPONSORED BY
4/18/2018
09:00 AM
Joe Cosmano
Joe Cosmano
Partner Perspectives
Connect Directly
LinkedIn
RSS
50%
50%

How to Leverage Artificial Intelligence for Cybersecurity

AI and predictive analytics should be used to augment a company's security team, not replace it. Here's why.

Artificial intelligence (AI) and machine learning (ML) are two interrelated concepts that people across the tech landscape know hold important implications. While the benefits of these capabilities are many, experts in the field are also known to flaunt dire theories about them - from threats of dystopian futures ala The Matrix films to more tangible fears like wide-scale data breaches.

Machine learning falls under the broader AI umbrella as a technology that can enable computers to learn and adapt through experience, essentially, mirroring human cognition to recognize patterns. Successful examples of recent ML deployments include Google’s evolving search algorithms and Amazon’s product recommendations, along with the many "news feeds" that are common across social media.

But similar initiatives can have big dividends where cybersecurity is involved, especially in freeing up many of the more rote activities with which security staff are tasked. Predictive analytics and greater automation, for instance, are being employed via AI as an innovative means to fill the skills shortage that’s prevalent across the industry. This allows teams to off-load basic tasks in favor of high-priority or more technical initiatives.

Matching Human Capabilities at a Speed We Can’t touch

Any technology that can lessen the burden of an enterprise security team is extremely useful. Further to that, any time there is a defined data set that can be analyzed and categorized into a defined set of actions, AI will be successful. Some of the benefits that are already being enjoyed by security teams include things like enhanced behavioral analysis, email security and malware prevention.

For instance, businesses can use AI to help establish "known knowns" and "known unknowns" – that is, traffic behavior that follows an expected baseline of activity, and the traffic, users, or devices that appear anomalous by comparison. Even if an individual was given a single pane of glass to monitor all the traffic crossing the network perimeter, spotting anomalies would be nearly impossible given the number of users and devices that, on average, leverage contemporary enterprise networks.

The bottom line is that computers simply absorb information at a greater speed than humans while adhering to the same rules and protocols.

Tread Carefully at First

Of course, that isn’t to say there aren’t pitfalls to implementing AI and ML into a security workflow. It’s important to remember that AI and predictive analytics should be used to augment a company’s security team not replace it.

As was explained above, quality data sets will inform the success of an AI or ML program. If a business is collecting the wrong type of information from the get go, or is storing it incorrectly, AI and predictive analytics will be drawing conclusions based on incomplete or inaccurate information, leading to a reduction in performance.

Organizations achieve the greatest benefits from these technologies when they are used to free teams up from manual tasks in order to focus on higher-level problems that require "human" brain power to assess context and nuance. Those assessments can’t be passed onto computers – at least not yet.

It’s also important to expect that hackers will inevitably ramp up their use of AI in response to the new tactics being deployed by security teams. This underscores  the point that while cybersecurity tactics will change with team, threats will always be present, requiring dedicated human collateral to help businesses remain secure for years to come.

Joe Cosmano has over 15 years of leadership and hands-on technical experience in roles including Senior Systems and Network Engineer and cybersecurity expert. Prior to iboss, he held positions with Atlantic Net, as engineering director overseeing a large team of engineers and ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
7 Tips for Infosec Pros Considering A Lateral Career Move
Kelly Sheridan, Staff Editor, Dark Reading,  1/21/2020
For Mismanaged SOCs, The Price Is Not Right
Kelly Sheridan, Staff Editor, Dark Reading,  1/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
IT 2020: A Look Ahead
Are you ready for the critical changes that will occur in 2020? We've compiled editor insights from the best of our network (Dark Reading, Data Center Knowledge, InformationWeek, ITPro Today and Network Computing) to deliver to you a look at the trends, technologies, and threats that are emerging in the coming year. Download it today!
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2015-3154
PUBLISHED: 2020-01-27
CRLF injection vulnerability in Zend\Mail (Zend_Mail) in Zend Framework before 1.12.12, 2.x before 2.3.8, and 2.4.x before 2.4.1 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via CRLF sequences in the header of an email.
CVE-2019-17190
PUBLISHED: 2020-01-27
A Local Privilege Escalation issue was discovered in Avast Secure Browser 76.0.1659.101. The vulnerability is due to an insecure ACL set by the AvastBrowserUpdate.exe (which is running as NT AUTHORITY\SYSTEM) when AvastSecureBrowser.exe checks for new updates. When the update check is triggered, the...
CVE-2014-8161
PUBLISHED: 2020-01-27
PostgreSQL before 9.0.19, 9.1.x before 9.1.15, 9.2.x before 9.2.10, 9.3.x before 9.3.6, and 9.4.x before 9.4.1 allows remote authenticated users to obtain sensitive column values by triggering constraint violation and then reading the error message.
CVE-2014-9481
PUBLISHED: 2020-01-27
The Scribunto extension for MediaWiki allows remote attackers to obtain the rollback token and possibly other sensitive information via a crafted module, related to unstripping special page HTML.
CVE-2015-0241
PUBLISHED: 2020-01-27
The to_char function in PostgreSQL before 9.0.19, 9.1.x before 9.1.15, 9.2.x before 9.2.10, 9.3.x before 9.3.6, and 9.4.x before 9.4.1 allows remote authenticated users to cause a denial of service (crash) or possibly execute arbitrary code via a (1) large number of digits when processing a numeric ...