Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Operations

12/12/2016
11:55 AM
Rutrell Yasin
Rutrell Yasin
Slideshows
Connect Directly
Twitter
RSS
E-Mail

5 Things Security Pros Need To Know About Machine Learning

Experts share best practices for data integrity, pattern recognition and computing power to help enterprises get the most out of machine learning-based technology for cybersecurity.
2 of 6

#1 Garbage In, Garbage Out

There is an old saying in machine learning called 'garbage in, garbage out,' says Cylance's Matt Wolff. Situations where machine learning would not be effective are places where not enough data is generated to provide insight into what is going on in the IT network, he says. 

'As long as data is present and useful, then machine learning can also be useful.  If the data isn't informative, then machine learning isn't going to work,' Wolff says.

'I am bullish on the machine learning opportunity, but nothing as far as I know has been vetted out to demonstrate that this technology is going to definitively be better than any other techniques we are using to try to detect attacks,' says Pete Lindstrom, research vice president for security strategies with IDC.

Inputs and Outputs 

Presumably, organizations want to use machine learning to quickly react to attacks. Yet, a whole plethora of diverse types of information feed into the security ecosystem - for example, network packet activity, system calls on endpoints, and user behavior data at a meta level on the network. So, first people need to figure out what information is feeding the system, Lindstrom says. 

'You still must understand the inputs and outputs.  What is the nature and type of data feeding the system? What process and techniques do they use to identify the algorithms?  What is the action they might take?' 


The challenge is that he nature of these techniques is so dynamic, cybersecurity analysts can't take for granted that their output is going to be the same as someone else's output, explains Lindstrom: 'You can't rely on efficacies without doing your own testing on the solution. If it is looking for anomalous activity on the network, the only way to determine what is anomalous is to learn your network. It can't take someone else's network and apply it. Otherwise we are almost back to signature-based defense.'

Added complexity 

If security professionals are not careful they can wind up increasing complexity with less understanding of the processes and the output is going to be the same as security tools are delivering today. 'It is not horrible, by the way, because the solutions we have today block a lot of attacks,' Lindstrom says. 

Image Source: Rawpixel.com via Shutterstock

#1 Garbage In, Garbage Out

There is an old saying in machine learning called garbage in, garbage out, says Cylances Matt Wolff. Situations where machine learning would not be effective are places where not enough data is generated to provide insight into what is going on in the IT network, he says.

As long as data is present and useful, then machine learning can also be useful. If the data isnt informative, then machine learning isnt going to work, Wolff says.

I am bullish on the machine learning opportunity, but nothing as far as I know has been vetted out to demonstrate that this technology is going to definitively be better than any other techniques we are using to try to detect attacks, says Pete Lindstrom, research vice president for security strategies with IDC.

Inputs and Outputs
Presumably, organizations want to use machine learning to quickly react to attacks. Yet, a whole plethora of diverse types of information feed into the security ecosystem - for example, network packet activity, system calls on endpoints, and user behavior data at a meta level on the network. So, first people need to figure out what information is feeding the system, Lindstrom says.

You still must understand the inputs and outputs. What is the nature and type of data feeding the system? What process and techniques do they use to identify the algorithms? What is the action they might take?

The challenge is that he nature of these techniques is so dynamic, cybersecurity analysts cant take for granted that their output is going to be the same as someone elses output, explains Lindstrom: You cant rely on efficacies without doing your own testing on the solution. If it is looking for anomalous activity on the network, the only way to determine what is anomalous is to learn your network. It cant take someone elses network and apply it. Otherwise we are almost back to signature-based defense.

Added complexity
If security professionals are not careful they can wind up increasing complexity with less understanding of the processes and the output is going to be the same as security tools are delivering today. It is not horrible, by the way, because the solutions we have today block a lot of attacks, Lindstrom says.

Image Source: Rawpixel.com via Shutterstock

2 of 6
Comment  | 
Print  | 
Comments
Newest First  |  Oldest First  |  Threaded View
JonKim
50%
50%
JonKim,
User Rank: Author
12/15/2016 | 3:02:27 PM
Insightful
Insightful, thank you for sharing.
gopinathmohan861
50%
50%
gopinathmohan861,
User Rank: Apprentice
12/14/2016 | 10:11:16 AM
Machine Learning - Useful points
First of all, a big thanks for the article. The informations (5 security pros) mentioned in this article very useful. As AI and ML is going to rule future world, we need to consider these security pros.
Mobile Banking Malware Up 50% in First Half of 2019
Kelly Sheridan, Staff Editor, Dark Reading,  1/17/2020
Exploits Released for As-Yet Unpatched Critical Citrix Flaw
Jai Vijayan, Contributing Writer,  1/13/2020
Microsoft to Officially End Support for Windows 7, Server 2008
Kelly Sheridan, Staff Editor, Dark Reading,  1/13/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
The Year in Security: 2019
This Tech Digest provides a wrap up and overview of the year's top cybersecurity news stories. It was a year of new twists on old threats, with fears of another WannaCry-type worm and of a possible botnet army of Wi-Fi routers. But 2019 also underscored the risk of firmware and trusted security tools harboring dangerous holes that cybercriminals and nation-state hackers could readily abuse. Read more.
Flash Poll
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
[Just Released] How Enterprises are Attacking the Cybersecurity Problem
Organizations have invested in a sweeping array of security technologies to address challenges associated with the growing number of cybersecurity attacks. However, the complexity involved in managing these technologies is emerging as a major problem. Read this report to find out what your peers biggest security challenges are and the technologies they are using to address them.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-7227
PUBLISHED: 2020-01-18
Westermo MRD-315 1.7.3 and 1.7.4 devices have an information disclosure vulnerability that allows an authenticated remote attacker to retrieve the source code of different functions of the web application via requests that lack certain mandatory parameters. This affects ifaces-diag.asp, system.asp, ...
CVE-2019-15625
PUBLISHED: 2020-01-18
A memory usage vulnerability exists in Trend Micro Password Manager 3.8 that could allow an attacker with access and permissions to the victim's memory processes to extract sensitive information.
CVE-2019-19696
PUBLISHED: 2020-01-18
A RootCA vulnerability found in Trend Micro Password Manager for Windows and macOS exists where the localhost.key of RootCA.crt might be improperly accessed by an unauthorized party and could be used to create malicious self-signed SSL certificates, allowing an attacker to misdirect a user to phishi...
CVE-2019-19697
PUBLISHED: 2020-01-18
An arbitrary code execution vulnerability exists in the Trend Micro Security 2019 (v15) consumer family of products which could allow an attacker to gain elevated privileges and tamper with protected services by disabling or otherwise preventing them to start. An attacker must already have administr...
CVE-2019-20357
PUBLISHED: 2020-01-18
A Persistent Arbitrary Code Execution vulnerability exists in the Trend Micro Security 2020 (v160 and 2019 (v15) consumer familiy of products which could potentially allow an attacker the ability to create a malicious program to escalate privileges and attain persistence on a vulnerable system.