Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


11:55 AM
Rutrell Yasin
Rutrell Yasin
Connect Directly

5 Things Security Pros Need To Know About Machine Learning

Experts share best practices for data integrity, pattern recognition and computing power to help enterprises get the most out of machine learning-based technology for cybersecurity.
2 of 6

#1 Garbage In, Garbage Out

There is an old saying in machine learning called garbage in, garbage out, says Cylances Matt Wolff. Situations where machine learning would not be effective are places where not enough data is generated to provide insight into what is going on in the IT network, he says.

As long as data is present and useful, then machine learning can also be useful. If the data isnt informative, then machine learning isnt going to work, Wolff says.

I am bullish on the machine learning opportunity, but nothing as far as I know has been vetted out to demonstrate that this technology is going to definitively be better than any other techniques we are using to try to detect attacks, says Pete Lindstrom, research vice president for security strategies with IDC.

Inputs and Outputs
Presumably, organizations want to use machine learning to quickly react to attacks. Yet, a whole plethora of diverse types of information feed into the security ecosystem - for example, network packet activity, system calls on endpoints, and user behavior data at a meta level on the network. So, first people need to figure out what information is feeding the system, Lindstrom says.

You still must understand the inputs and outputs. What is the nature and type of data feeding the system? What process and techniques do they use to identify the algorithms? What is the action they might take?

The challenge is that he nature of these techniques is so dynamic, cybersecurity analysts cant take for granted that their output is going to be the same as someone elses output, explains Lindstrom: You cant rely on efficacies without doing your own testing on the solution. If it is looking for anomalous activity on the network, the only way to determine what is anomalous is to learn your network. It cant take someone elses network and apply it. Otherwise we are almost back to signature-based defense.

Added complexity
If security professionals are not careful they can wind up increasing complexity with less understanding of the processes and the output is going to be the same as security tools are delivering today. It is not horrible, by the way, because the solutions we have today block a lot of attacks, Lindstrom says.

Image Source: Rawpixel.com via Shutterstock

2 of 6
Comment  | 
Print  | 
Newest First  |  Oldest First  |  Threaded View
User Rank: Author
12/15/2016 | 3:02:27 PM
Insightful, thank you for sharing.
User Rank: Apprentice
12/14/2016 | 10:11:16 AM
Machine Learning - Useful points
First of all, a big thanks for the article. The informations (5 security pros) mentioned in this article very useful. As AI and ML is going to rule future world, we need to consider these security pros.
COVID-19: Latest Security News & Commentary
Dark Reading Staff 5/28/2020
Stay-at-Home Orders Coincide With Massive DNS Surge
Robert Lemos, Contributing Writer,  5/27/2020
Register for Dark Reading Newsletters
White Papers
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: Can you smell me now?
Current Issue
How Cybersecurity Incident Response Programs Work (and Why Some Don't)
This Tech Digest takes a look at the vital role cybersecurity incident response (IR) plays in managing cyber-risk within organizations. Download the Tech Digest today to find out how well-planned IR programs can detect intrusions, contain breaches, and help an organization restore normal operations.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
PUBLISHED: 2020-05-29
There is an Incorrect Authorization vulnerability in Micro Focus Service Management Automation (SMA) product affecting version 2018.05 to 2020.02. The vulnerability could be exploited to provide unauthorized access to the Container Deployment Foundation.
PUBLISHED: 2020-05-29
A Denial of Service vulnerability in MuleSoft Mule CE/EE 3.8.x, 3.9.x, and 4.x released before April 7, 2020, could allow remote attackers to submit data which can lead to resource exhaustion.
PUBLISHED: 2020-05-29
All versions of snyk-broker before 4.72.2 are vulnerable to Arbitrary File Read. It allows arbitrary file reads for users who have access to Snyk's internal network by appending the URL with a fragment identifier and a whitelisted path e.g. `#package.json`
PUBLISHED: 2020-05-29
All versions of snyk-broker after 4.72.0 including and before 4.73.1 are vulnerable to Arbitrary File Read. It allows arbitrary file reads to users with access to Snyk's internal network of any files ending in the following extensions: yaml, yml or json.
PUBLISHED: 2020-05-29
All versions of snyk-broker before 4.73.1 are vulnerable to Information Exposure. It logs private keys if logging level is set to DEBUG.