Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Comments
Predicting Vulnerability Weaponization
Newest First  |  Oldest First  |  Threaded View
tdsan
50%
50%
tdsan,
User Rank: Ninja
6/29/2019 | 3:22:22 PM
Logical review of the analytics process
With a data set established, we need analytical models to gain predictive insights. By looking at historical weaponization trends, we can train algorithms to look across diverse types of data and identify the combination of traits that best predicts which vulnerabilities will be weaponized by attackers in the wild. Just as importantly, this approach can predict the speed at which a given vulnerability is likely to be weaponized.
  •  Traits and vulnerabilities - Couldn't we start with the threats that actually succeeded. Then take that information and categorize it using the risk score from CVE or others. take that information and create a relationship database (i.e SharedDB or No-SQL columnar DB) where big data comes into play to establish or identify those relationships, this will help the end-user determine the number of similarities between the variants or possible vulnerabilities that exist
  • Locations - identify where the code is coming from by associating the geographic regions, with the code, actors and success levels, this allows for those models (again Big Data) to start narrowing down the attacks to specific regions based on the type of attack, its function, success rate and locale (determine the type of attack and method of attack based on their success rate and design).
  • Finally, use ML to look at the attack vectors from a historical standpoint, the results from BigData can now inject its findings into the ML DB and from those relationshps, we can determine based on risk score if something else will occur as part of the variants evolution (most systems build on itself).

ML Concepts

 

Big Data
alpana.b
50%
50%
alpana.b,
User Rank: Apprentice
6/20/2019 | 6:42:52 AM
Automated Testing
Can there be a solution as Automated Testing? Or a testing that can run 24/7  and immediately identify existing or newly created vulnerabilities? At least for DDoS testing, I know there is such product available - this product doesn't need any maintenance window, for enterprises its a business as usual and testing report is handed over to security team to tackle issues with vendor. https://mazebolt.com/ddos-radar 

Do you see any such product for other security areas which can emerge as new technology?
dmddd
50%
50%
dmddd,
User Rank: Apprentice
6/13/2019 | 11:32:09 PM
Reference
Death Srinivas, Thanks for the interesting article. Would you mind sharing the reference of the underlying research paper? Best regards, David


COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/23/2020
7 Tips for Choosing Security Metrics That Matter
Ericka Chickowski, Contributing Writer,  10/19/2020
Russian Military Officers Unmasked, Indicted for High-Profile Cyberattack Campaigns
Kelly Jackson Higgins, Executive Editor at Dark Reading,  10/19/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-24847
PUBLISHED: 2020-10-23
A Cross-Site Request Forgery (CSRF) vulnerability is identified in FruityWifi through 2.4. Due to a lack of CSRF protection in page_config_adv.php, an unauthenticated attacker can lure the victim to visit his website by social engineering or another attack vector. Due to this issue, an unauthenticat...
CVE-2020-24848
PUBLISHED: 2020-10-23
FruityWifi through 2.4 has an unsafe Sudo configuration [(ALL : ALL) NOPASSWD: ALL]. This allows an attacker to perform a system-level (root) local privilege escalation, allowing an attacker to gain complete persistent access to the local system.
CVE-2020-5990
PUBLISHED: 2020-10-23
NVIDIA GeForce Experience, all versions prior to 3.20.5.70, contains a vulnerability in the ShadowPlay component which may lead to local privilege escalation, code execution, denial of service or information disclosure.
CVE-2020-25483
PUBLISHED: 2020-10-23
An arbitrary command execution vulnerability exists in the fopen() function of file writes of UCMS v1.4.8, where an attacker can gain access to the server.
CVE-2020-5977
PUBLISHED: 2020-10-23
NVIDIA GeForce Experience, all versions prior to 3.20.5.70, contains a vulnerability in NVIDIA Web Helper NodeJS Web Server in which an uncontrolled search path is used to load a node module, which may lead to code execution, denial of service, escalation of privileges, and information disclosure.