Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Comments
Start Preparing Now for the Post-Quantum Future
Newest First  |  Oldest First  |  Threaded View
timhollebeek
50%
50%
timhollebeek,
User Rank: Author
1/2/2019 | 1:41:25 PM
Re: Classical is better
It is true that potential number-theoretic breakthroughs could threaten RSA before quantum computers do.  I know several experts who view this as an additional reason to move to post-quantum methods before that happens.

However, it is not true that smart people have ignored or neglected the problem of finding better classical factoring algorithms.  Plenty of effort has been expended by some extremely smart number theoreticians for a long, long time, yet 2048-bit numbers still cannot be factored in "minutes" as you suggest.
Joe Stanganelli
50%
50%
Joe Stanganelli,
User Rank: Ninja
12/29/2018 | 6:21:10 PM
trumping the 5G race
Making these trends all the more important is the notion that secure quantum communications will be the next big thing after 5G -- and, thus, critical to national security, as highlighted by a recent USAF report.

In particular, the report pointed to recent experiments involving a Chinese launched satellite from which tthe altering of quantum subparticles entangled with quantum subparticles on Earth affected the latter subparticles -- and further experimentation in that field by scientists around the globe.
fojo123
50%
50%
fojo123,
User Rank: Apprentice
12/29/2018 | 7:27:56 AM
Classical is better
"While some of the world's brightest minds are working on "quantum-safe" encryption mechanisms, the process will take time..."

 

It's all very well being "some of the world's brightest minds", but when number theoretic problems like integer factoriation are solved in practically fast polynomial time on classical computers, thanks to a very deep understanding of number theory translated into clever and efficient algorithms that can break RSA-1024, 2048 or 4096 in a matter of minutes, then quantum computers will become a rather moot point. It's like saying I can build a ten tonne hydraulic steam hammer press, and it can crack all types of nuts instantly, including cashews, walnuts, almonds and brazils, when in fact a small, hand-held vise-like tool can perform the job just as well, and with magnitudes less effort and expense. Added further to that, is the fact that with quantum computers, there's a form of 'quantum cop-out', where we have no greater understanding of number theory than we did before, we simply rely on quantum spookiness to solve our problems for us, instead of old fashioned ingenuity, tenacity and resilience when tackling difficult mathematical problems. You'd be suprised how far you could progress in solving these problems classically, if you but only tried. Maybe some old-fashioned discernment and wisdom would go a long way in general in the modern world. If as many people as are working on quantum computers, worked with as much effort and enthusiasm on understanding number theory problems, then these problems would have been solved satisfactorily quickly and efficiently many years ago, all the while increasing our insight into the nature of these problems, and having many important and useful corollaries and knock-on effects in other fields as well.   


News
US Formally Attributes SolarWinds Attack to Russian Intelligence Agency
Jai Vijayan, Contributing Writer,  4/15/2021
News
Dependency Problems Increase for Open Source Components
Robert Lemos, Contributing Writer,  4/14/2021
News
FBI Operation Remotely Removes Web Shells From Exchange Servers
Kelly Sheridan, Staff Editor, Dark Reading,  4/14/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-31547
PUBLISHED: 2021-04-22
An issue was discovered in the AbuseFilter extension for MediaWiki through 1.35.2. Its AbuseFilterCheckMatch API reveals suppressed edits and usernames to unprivileged users through the iteration of crafted AbuseFilter rules.
CVE-2021-31548
PUBLISHED: 2021-04-22
An issue was discovered in the AbuseFilter extension for MediaWiki through 1.35.2. A MediaWiki user who is partially blocked or was unsuccessfully blocked could bypass AbuseFilter and have their edits completed.
CVE-2021-31549
PUBLISHED: 2021-04-22
An issue was discovered in the AbuseFilter extension for MediaWiki through 1.35.2. The Special:AbuseFilter/examine form allowed for the disclosure of suppressed MediaWiki usernames to unprivileged users.
CVE-2021-31550
PUBLISHED: 2021-04-22
An issue was discovered in the CommentBox extension for MediaWiki through 1.35.2. Via crafted configuration variables, a malicious actor could introduce XSS payloads into various layers.
CVE-2021-31551
PUBLISHED: 2021-04-22
An issue was discovered in the PageForms extension for MediaWiki through 1.35.2. Crafted payloads for Token-related query parameters allowed for XSS on certain PageForms-managed MediaWiki pages.