Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security

// // //
5/29/2018
07:00 AM
Larry Loeb
Larry Loeb
Larry Loeb

Z-Shave Attack Shows Why IoT Security Need More Attention

Pen Test Partners have discovered a new IoT vulnerability that researchers call Z-Shave. This shows why manufactures need to think much harder about building security into connected devices.

Z-Wave is a communications protocol that wirelessly connects many Internet of Things (IoT) devices as an alternative to the shorter range Bluetooth protocol.

As of April, there were 2,400 products that used the 900 Mhz system, according to Wikipedia.

However, Pen Test Partners showed a way that pairing of two of these devices can be made insecure through an attack that they call Z-Shave.

Security for the system is done through a shared network key. And that key is what drives the attack. Pen Test showed that the current S2 protocol can be driven so it reverts to the older, far less secure S0 protocol that was in use before 2013. The key-exchange now uses Diffie-Hellman encryption in S2 and can also involve authentication by entry of a five-digit code into the controller.

S0 used an fixed key consisting of all zeroes.

(Source: Pixabay)\r\n
(Source: Pixabay)\r\n

Pen Test researchers found that that an active attacker, present at the time of device pairing, can downgrade an S2 pairing to S0, which allows them to intercept the key and then intercept and inject S0 traffic on the Z-Wave network.

Since Z-Wave devices are designed to be backwards compatible, an S2 device will pair as S0 if the controller only supports S0. An S0 device will also pair with no encryption if the controller does not support S0. A network can support a mixture of devices, although encrypted traffic cannot move from S0 to S2 during use.

Pen Test researchers proposed three attacks methods for Z-Shave.

The first finds that the node info for the unpaired node, which has data that is needed for a spoofed pairing. This can be sniffed by an attacker, modified, and then sent to the controller. Boom -- pairing on the attackers terms is performed.

The second method uses the node information sent when a battery is inserted into a device in the same way, with the same result.

The third method is trickier. As Pen Test notes:

An attacker can continuously listen for the node info from the genuine node. As soon as the home ID has been obtained, they can actively jam the rest of the packet, preventing the node info from being received. […] The jamming needs to occur mid-way through the transmission of a packet and the current tools available are only capable of waiting until the end of a packet.

Silicon Labs, the company behind the Z-Wave protocol has pooh-poohed the issue. The company's main retort to the Z-Shave attack is that an attacker has a very short time window to execute the attack.

Which is true, but the attack could be carried out by battery-operated hardware left in the vicinity that is sniffing for the right opportunity, so that criticism is not entirely relevant.

Worse, Silicon Labs noted that a S2 downgrade should make the user aware that it has occurred with a message from the S2 controller. Pen Test showed in a YouTube video that this does not always happen, and the end-user may be unaware of the change in security. Perhaps a manufacturer did not fully implement S2 in their product.

Silicon Labs announced that they are changing the specs so that the user will have to acknowledge the alert if it occurs.

In an email to Security Now, Silicon Labs noted that the Pen Test researchers in their YouTube video made use of a developer tool, not a consumer rated software product, which was not designed to notify the user of security level changes.

Manufacturers need to implement the latest level of security in their products. When a simple attack can throw it all for a loop, especially in products like locks, the burden becomes even more important.

Editor's Note: This article was updated to include a comment from Silicon Labs.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
The 10 Most Impactful Types of Vulnerabilities for Enterprises Today
Managing system vulnerabilities is one of the old est - and most frustrating - security challenges that enterprise defenders face. Every software application and hardware device ships with intrinsic flaws - flaws that, if critical enough, attackers can exploit from anywhere in the world. It's crucial that defenders take stock of what areas of the tech stack have the most emerging, and critical, vulnerabilities they must manage. It's not just zero day vulnerabilities. Consider that CISA's Known Exploited Vulnerabilities (KEV) catalog lists vulnerabilitlies in widely used applications that are "actively exploited," and most of them are flaws that were discovered several years ago and have been fixed. There are also emerging vulnerabilities in 5G networks, cloud infrastructure, Edge applications, and firmwares to consider.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2023-1172
PUBLISHED: 2023-03-17
The Bookly plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the full name value in versions up to, and including, 21.5 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that w...
CVE-2023-1469
PUBLISHED: 2023-03-17
The WP Express Checkout plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘pec_coupon[code]’ parameter in versions up to, and including, 2.2.8 due to insufficient input sanitization and output escaping. This makes it possible for authenti...
CVE-2023-1466
PUBLISHED: 2023-03-17
A vulnerability was found in SourceCodester Student Study Center Desk Management System 1.0. It has been rated as critical. This issue affects the function view_student of the file admin/?page=students/view_student. The manipulation of the argument id with the input 3' AND (SELECT 2100 FROM (SELECT(...
CVE-2023-1467
PUBLISHED: 2023-03-17
A vulnerability classified as critical has been found in SourceCodester Student Study Center Desk Management System 1.0. Affected is an unknown function of the file Master.php?f=delete_img of the component POST Parameter Handler. The manipulation of the argument path with the input C%3A%2Ffoo.txt le...
CVE-2023-1468
PUBLISHED: 2023-03-17
A vulnerability classified as critical was found in SourceCodester Student Study Center Desk Management System 1.0. Affected by this vulnerability is an unknown functionality of the file admin/?page=reports&date_from=2023-02-17&date_to=2023-03-17 of the component Report Handler. The manipula...