Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security

5/29/2018
07:00 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

Z-Shave Attack Shows Why IoT Security Need More Attention

Pen Test Partners have discovered a new IoT vulnerability that researchers call Z-Shave. This shows why manufactures need to think much harder about building security into connected devices.

Z-Wave is a communications protocol that wirelessly connects many Internet of Things (IoT) devices as an alternative to the shorter range Bluetooth protocol.

As of April, there were 2,400 products that used the 900 Mhz system, according to Wikipedia.

However, Pen Test Partners showed a way that pairing of two of these devices can be made insecure through an attack that they call Z-Shave.

Security for the system is done through a shared network key. And that key is what drives the attack. Pen Test showed that the current S2 protocol can be driven so it reverts to the older, far less secure S0 protocol that was in use before 2013. The key-exchange now uses Diffie-Hellman encryption in S2 and can also involve authentication by entry of a five-digit code into the controller.

S0 used an fixed key consisting of all zeroes.

Pen Test researchers found that that an active attacker, present at the time of device pairing, can downgrade an S2 pairing to S0, which allows them to intercept the key and then intercept and inject S0 traffic on the Z-Wave network.

Since Z-Wave devices are designed to be backwards compatible, an S2 device will pair as S0 if the controller only supports S0. An S0 device will also pair with no encryption if the controller does not support S0. A network can support a mixture of devices, although encrypted traffic cannot move from S0 to S2 during use.

Pen Test researchers proposed three attacks methods for Z-Shave.

The first finds that the node info for the unpaired node, which has data that is needed for a spoofed pairing. This can be sniffed by an attacker, modified, and then sent to the controller. Boom -- pairing on the attackers terms is performed.

The second method uses the node information sent when a battery is inserted into a device in the same way, with the same result.

The third method is trickier. As Pen Test notes:

An attacker can continuously listen for the node info from the genuine node. As soon as the home ID has been obtained, they can actively jam the rest of the packet, preventing the node info from being received. […] The jamming needs to occur mid-way through the transmission of a packet and the current tools available are only capable of waiting until the end of a packet.

Silicon Labs, the company behind the Z-Wave protocol has pooh-poohed the issue. The company's main retort to the Z-Shave attack is that an attacker has a very short time window to execute the attack.

Which is true, but the attack could be carried out by battery-operated hardware left in the vicinity that is sniffing for the right opportunity, so that criticism is not entirely relevant.

Worse, Silicon Labs noted that a S2 downgrade should make the user aware that it has occurred with a message from the S2 controller. Pen Test showed in a YouTube video that this does not always happen, and the end-user may be unaware of the change in security. Perhaps a manufacturer did not fully implement S2 in their product.

Silicon Labs announced that they are changing the specs so that the user will have to acknowledge the alert if it occurs.

In an email to Security Now, Silicon Labs noted that the Pen Test researchers in their YouTube video made use of a developer tool, not a consumer rated software product, which was not designed to notify the user of security level changes.

Manufacturers need to implement the latest level of security in their products. When a simple attack can throw it all for a loop, especially in products like locks, the burden becomes even more important.

Editor's Note: This article was updated to include a comment from Silicon Labs.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...