Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security

4/27/2018
08:05 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

Researchers Detail Self-Learning System That Secures IoT Devices

Researchers from several universities have published a new paper describing what they believe is a better way to protect and secure IoT devices and sensors.

The proliferation of Internet of Things devices seems to be unstoppable. However, along with the increase in the number of devices out there comes the security risk that these sensors and connected things can pose when they are compromised by an attacker.

In addition, many security tools don't adapt well to IoT. (See Increased IoT Use Causing Added Enterprise Security Concerns Report.)

These tools have historically been based on assumptions about the protocols that are used in the network connections and the device states that exist when they attach to the network. For instance, IoT devices are too variable in these areas to fit into neat categories.

Now, however, researchers have come up with a self-learning system aimed at detecting compromised IoT devices, which does not require any prior knowledge about the device types or require pre-programmed training data to operate.

Here's how they describe it:

We propose a novel approach that combines automated device-type identification and subsequent device-type-specific anomaly detection by making use of machine learning techniques. Using this approach, we demonstrate that we can effectively and quickly detect compromised IoT devices with little false alarms. [It] is completely autonomous and can be trained in a distributed crowdsourced manner without requiring human intervention or labeled training data.

Sounds too good to be true, but the researchers say that they have it.

Giving it the name of DÏOT, the system has two main components.

The first is the "Security Gateway" and the second is the "IoT Security Service." Together, these two components detect compromised IoT devices by monitoring their communication as observed by the Security Gateway, which acts as a network gateway for the local network.

The security service also has cloud-based functionality, which has two main components: Device-Type Identification and Anomaly Detection Model.

The security service trains the gateway by using fingerprints that are generated at several Security Gateways to learn the specific device-type identification models that are attached to the network. The aggregating maximizes the usage of limited information obtained from scarce communications at each gateway.

The Anomaly Detection Model maintains a repository of device-type-specific anomaly detection models which are matched to the signatures gathered.

Once a model is chosen, the system looks at the current traffic pattern to see if it matches the normal pattern expected. This is done through the use of neural network techniques. If it doesn’t matchup, an anomaly alert is generated.


The fundamentals of network security are being redefined -- don't get left in the dark by a DDoS attack! Join us in Austin from May 14-16 at the fifth-annual Big Communications Event. There's still time to register and communications service providers get in free!

The system was tested on a lab network that had several devices, such as appliances, smart lamps, cameras, and routers connected to it by WiFi. The network was allowed to connect for 24 hours before it was tested. It turned out that effective device identification for 33 different IoT devices required only a few hours of traffic monitoring.

Various attacks were then implemented, most based on the Mirai botnet. (See IoT Malware-on-the-Fly Expected to Rise .)

Researchers found that most aggressive distributed denial of service (DDoS) attacks were detected in one millisecond with 100% accuracy. Overall, it detected 96% of attacks in less than 0.03 seconds with a low false alarm rate of 1%.

This kind of system has some potential huge benefits.

Mostly, it is automated and effective and so can serve as a protective barrier that can be widely implemented. Further development with this technique may help to rid the Internet of the dangers of malicious IoT devices and the bots that go with them.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 8/10/2020
Pen Testers Who Got Arrested Doing Their Jobs Tell All
Kelly Jackson Higgins, Executive Editor at Dark Reading,  8/5/2020
Researcher Finds New Office Macro Attacks for MacOS
Curtis Franklin Jr., Senior Editor at Dark Reading,  8/7/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Changing Face of Threat Intelligence
The Changing Face of Threat Intelligence
This special report takes a look at how enterprises are using threat intelligence, as well as emerging best practices for integrating threat intel into security operations and incident response. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-9079
PUBLISHED: 2020-08-11
FusionSphere OpenStack 8.0.0 have a protection mechanism failure vulnerability. The product incorrectly uses a protection mechanism. An attacker has to find a way to exploit the vulnerability to conduct directed attacks against the affected product.
CVE-2020-16275
PUBLISHED: 2020-08-10
A cross-site scripting (XSS) vulnerability in the Credential Manager component in SAINT Security Suite 8.0 through 9.8.20 could allow arbitrary script to run in the context of a logged-in user when the user clicks on a specially crafted link.
CVE-2020-16276
PUBLISHED: 2020-08-10
An SQL injection vulnerability in the Assets component of SAINT Security Suite 8.0 through 9.8.20 allows a remote, authenticated attacker to gain unauthorized access to the database.
CVE-2020-16277
PUBLISHED: 2020-08-10
An SQL injection vulnerability in the Analytics component of SAINT Security Suite 8.0 through 9.8.20 allows a remote, authenticated attacker to gain unauthorized access to the database.
CVE-2020-16278
PUBLISHED: 2020-08-10
A cross-site scripting (XSS) vulnerability in the Permissions component in SAINT Security Suite 8.0 through 9.8.20 could allow arbitrary script to run in the context of a logged-in user when the user clicks on a specially crafted link.