Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security //

Botnet

8/21/2018
08:05 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

Electrical Grid Attack via IoT Devices Successfully Simulated

Researchers have successfully simulated an attack on an electrical power grid that employs IoT devices to trigger a blackout.

The electrical power grid of the US has been a hot topic in security circles as of late. The Department of Homeland Security, along with the FBI, has even issued an alert about Russian hacking of energy sector industrial control systems.

The threat model has been one focusing on the control systems that maintain the production facilities that are involved in energy creation. But we may have been looking at the wrong things, according to three Princeton researchers.

At the 27th USENIX Security Symposium, the researchers describe a new kind of attack to the grid that uses compromised high-wattage IoT devices to do the dirty work. WiFi-enabled heaters and air conditioners (which may use 1,500 to 5,000 watts each) are the kind of devices the researchers see as soon becoming ubiquitous.

As they put it, "An important characteristic of [these] attacks is that unlike most of previous attacks on the power grid, they do not target the power grid's Supervisory Control And Data Acquisitions (SCADA) system but rather the loads that are much less protected as in load-altering attacks."

Heather Emond via Unsplash
Heather Emond via Unsplash

These high-wattage devices can be the basis of a manipulation of demand via IoT (MadIoT) attack which may then cause local power outages and even large-scale blackouts.

The researchers, fortunately, did not try to make this happen on the real electrical grid. They used a "state of the art" simulator which is based on the power grid model of the Western Electricity Coordinating Council. WECC concerns itself with the western parts of the US and Canada.

Using this simulator, the researchers found that a botnet made up of 90,000 air conditioners and 18,000 electric water heaters within a local area was enough to cause a major impact to a grid.

An attacker would first take control of a smart high-wattage device and then manipulate the aggregate power consumption by turning the devices off and on. The researchers found that if 30% of the high-wattage devices within a grid boundary exhibited such behavior then a generator's protective relays would trip.

This scenario could lead to loss of the power from the generator into the grid. If this kind of attack caused a full blackout, the grid would need to be restarted in a manner that assures the frequency of the electricity is maintained. But an attacker can use the botnet of devices to suddenly increase demand once power is restored in one area. This can shut down the grid yet again.

The MadIoT attacks' sources are hard to detect and disconnect by the grid operator due to their distributed nature. Additionally, these attacks can be easily repeated until effective, and are blackbox in nature, since the attacker does not need to know the operational details of the power grid.

Developing forms of mitigation will undoubtedly have to be a team effort between the IoT community and those responsible for grid health.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
Commentary
How SolarWinds Busted Up Our Assumptions About Code Signing
Dr. Jethro Beekman, Technical Director,  3/3/2021
News
'ObliqueRAT' Now Hides Behind Images on Compromised Websites
Jai Vijayan, Contributing Writer,  3/2/2021
News
Attackers Turn Struggling Software Projects Into Trojan Horses
Robert Lemos, Contributing Writer,  2/26/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-5148
PUBLISHED: 2021-03-05
SonicWall SSO-agent default configuration uses NetAPI to probe the associated IP's in the network, this client probing method allows a potential attacker to capture the password hash of the privileged user and potentially forces the SSO Agent to authenticate allowing an attacker to bypass firewall a...
CVE-2020-36255
PUBLISHED: 2021-03-05
An issue was discovered in IdentityModel (aka ScottBrady.IdentityModel) before 1.3.0. The Branca implementation allows an attacker to modify and forge authentication tokens.
CVE-2019-18351
PUBLISHED: 2021-03-05
An issue was discovered in channels/chan_sip.c in Sangoma Asterisk through 13.29.1, through 16.6.1, and through 17.0.0; and Certified Asterisk through 13.21-cert4. A SIP request can be sent to Asterisk that can change a SIP peer's IP address. A REGISTER does not need to occur, and calls can be hijac...
CVE-2021-27963
PUBLISHED: 2021-03-05
SonLogger before 6.4.1 is affected by user creation with any user permissions profile (e.g., SuperAdmin). An anonymous user can send a POST request to /User/saveUser without any authentication or session header.
CVE-2021-27964
PUBLISHED: 2021-03-05
SonLogger before 6.4.1 is affected by Unauthenticated Arbitrary File Upload. An attacker can send a POST request to /Config/SaveUploadedHotspotLogoFile without any authentication or session header. There is no check for the file extension or content of the uploaded file.