Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security //

Botnet

8/21/2018
08:05 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

Electrical Grid Attack via IoT Devices Successfully Simulated

Researchers have successfully simulated an attack on an electrical power grid that employs IoT devices to trigger a blackout.

The electrical power grid of the US has been a hot topic in security circles as of late. The Department of Homeland Security, along with the FBI, has even issued an alert about Russian hacking of energy sector industrial control systems.

The threat model has been one focusing on the control systems that maintain the production facilities that are involved in energy creation. But we may have been looking at the wrong things, according to three Princeton researchers.

At the 27th USENIX Security Symposium, the researchers describe a new kind of attack to the grid that uses compromised high-wattage IoT devices to do the dirty work. WiFi-enabled heaters and air conditioners (which may use 1,500 to 5,000 watts each) are the kind of devices the researchers see as soon becoming ubiquitous.

As they put it, "An important characteristic of [these] attacks is that unlike most of previous attacks on the power grid, they do not target the power grid's Supervisory Control And Data Acquisitions (SCADA) system but rather the loads that are much less protected as in load-altering attacks."

These high-wattage devices can be the basis of a manipulation of demand via IoT (MadIoT) attack which may then cause local power outages and even large-scale blackouts.

The researchers, fortunately, did not try to make this happen on the real electrical grid. They used a "state of the art" simulator which is based on the power grid model of the Western Electricity Coordinating Council. WECC concerns itself with the western parts of the US and Canada.

Using this simulator, the researchers found that a botnet made up of 90,000 air conditioners and 18,000 electric water heaters within a local area was enough to cause a major impact to a grid.

An attacker would first take control of a smart high-wattage device and then manipulate the aggregate power consumption by turning the devices off and on. The researchers found that if 30% of the high-wattage devices within a grid boundary exhibited such behavior then a generator's protective relays would trip.

This scenario could lead to loss of the power from the generator into the grid. If this kind of attack caused a full blackout, the grid would need to be restarted in a manner that assures the frequency of the electricity is maintained. But an attacker can use the botnet of devices to suddenly increase demand once power is restored in one area. This can shut down the grid yet again.

The MadIoT attacks' sources are hard to detect and disconnect by the grid operator due to their distributed nature. Additionally, these attacks can be easily repeated until effective, and are blackbox in nature, since the attacker does not need to know the operational details of the power grid.

Developing forms of mitigation will undoubtedly have to be a team effort between the IoT community and those responsible for grid health.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Attackers Leave Stolen Credentials Searchable on Google
Kelly Sheridan, Staff Editor, Dark Reading,  1/21/2021
How to Better Secure Your Microsoft 365 Environment
Kelly Sheridan, Staff Editor, Dark Reading,  1/25/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win an Amazon Gift Card! Click Here
Latest Comment: We need more votes, check the obituaries.
Current Issue
2020: The Year in Security
Download this Tech Digest for a look at the biggest security stories that - so far - have shaped a very strange and stressful year.
Flash Poll
Assessing Cybersecurity Risk in Today's Enterprises
Assessing Cybersecurity Risk in Today's Enterprises
COVID-19 has created a new IT paradigm in the enterprise -- and a new level of cybersecurity risk. This report offers a look at how enterprises are assessing and managing cyber-risk under the new normal.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-3272
PUBLISHED: 2021-01-27
jp2_decode in jp2/jp2_dec.c in libjasper in JasPer 2.0.24 has a heap-based buffer over-read when there is an invalid relationship between the number of channels and the number of image components.
CVE-2021-3317
PUBLISHED: 2021-01-26
KLog Server through 2.4.1 allows authenticated command injection. async.php calls shell_exec() on the original value of the source parameter.
CVE-2013-2512
PUBLISHED: 2021-01-26
The ftpd gem 0.2.1 for Ruby allows remote attackers to execute arbitrary OS commands via shell metacharacters in a LIST or NLST command argument within FTP protocol traffic.
CVE-2021-3165
PUBLISHED: 2021-01-26
SmartAgent 3.1.0 allows a ViewOnly attacker to create a SuperUser account via the /#/CampaignManager/users URI.
CVE-2021-1070
PUBLISHED: 2021-01-26
NVIDIA Jetson AGX Xavier Series, Jetson Xavier NX, TX1, TX2, Nano and Nano 2GB, L4T versions prior to 32.5, contains a vulnerability in the apply_binaries.sh script used to install NVIDIA components into the root file system image, in which improper access control is applied, which may lead to an un...