Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

IoT/Embedded Security

8/31/2017
04:15 PM
Terry Young
Terry Young
News Analysis-Security Now
50%
50%

Big IoT Security Benefits From Service Providers Thinking Small

It doesn't take many bad devices to wreck a network. Concentrating on a small number of miscreants can reap huge benefits for service providers.

Industry discussions about the Internet of Things (IoT) usually quote big numbers -- e.g., 30 billion connected devices by 2022 and a global IoT market valued at $14.4 trillion. For service providers, there is an urgent need to scale up, meet those new network requirements, and capture their share of the IoT market opportunity.

But big-scale strategies alone don't work when applied to IoT security. Mobile network operators in the IoT space, such as Telenor Connexion, have already identified that a very small number of misbehaving devices (less than 0.01 percent of the base) can create a signaling storm, resulting in significant congestion that can cascade to other networks. Hackers deploy the same tactics because, unlike service providers, hacker economics do not depend on large-scale success. Malicious actors only need a few successful infections to be economically viable or to disrupt critical service.

Hacker infrastructure investment and cost barriers are quite low. Bad actors use inexpensive, mass-scale techniques (e.g., email, automated bots, off-the-shelf exploit kits) to canvass large quantities of networked devices and locate vulnerable targets, but only need to infect a small number of devices or network elements (or even just one) in the right location or network to be economically viable or launch a successful network attack.

Finding those relatively "few" infected devices, and the malicious traffic associated with them, needs to be the primary objective of service provider network security strategies.

Hunting for "the few" may seem counterintuitive to service providers, where high performance and throughput are critical criteria in infrastructure equipment decisions. But a successful security posture for billions of IoT devices requires just that -- accurate and rapid identification of that small percentage of the total traffic attempting to infect devices, and of those devices already infected. Higher performance, without a truly effective threat prevention approach, simply gives malware a high-speed "free ride." And malware doesn't need a high "adoption rate" to create damage.

In a published example, researchers demonstrated that malware infection rates of less than 0.1 percent of the population focused on specific 911 centers can severely impair the availability of critical emergency services. In the research model, the malware caused infected devices to generate "false" calls to the 911 center. The added "false" calls, which require a longer response time, tie up call center resources and effectively make the service unavailable for other genuine emergency calls.

So how can service providers locate and stop the "few" when there will be billions of devices connecting to their networks -- most of which they have little control over? Endpoint protection alone (such as anti-malware software on cellphones) is insufficient -- most mobile subscribers simply won't use it, and it's not feasible for the majority of IoT devices.

A network-based prevention program is a more realistic solution. Service providers must be able to "see" and inspect their traffic to determine whether it is malicious and identify already-infected devices on their network to prevent hacker success. By thinking small -- that is, focusing on the minor percentage of traffic that is malicious, or identifying infected devices -- can service providers offer their subscribers and IoT providers a safe network free from infected devices and security breaches.

Related posts:

Terry Young is Senior Manager of Service Provider Product Marketing at Palo Alto Networks, where she is responsible for developing programming to communicate the business value of security for mobile network operators and other service providers.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/23/2020
Modern Day Insider Threat: Network Bugs That Are Stealing Your Data
David Pearson, Principal Threat Researcher,  10/21/2020
Are You One COVID-19 Test Away From a Cybersecurity Disaster?
Alan Brill, Senior Managing Director, Cyber Risk Practice, Kroll,  10/21/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-21269
PUBLISHED: 2020-10-27
checkpath in OpenRC through 0.42.1 might allow local users to take ownership of arbitrary files because a non-terminal path component can be a symlink.
CVE-2020-27743
PUBLISHED: 2020-10-26
libtac in pam_tacplus through 1.5.1 lacks a check for a failure of RAND_bytes()/RAND_pseudo_bytes(). This could lead to use of a non-random/predictable session_id.
CVE-2020-1915
PUBLISHED: 2020-10-26
An out-of-bounds read in the JavaScript Interpreter in Facebook Hermes prior to commit 8cb935cd3b2321c46aa6b7ed8454d95c75a7fca0 allows attackers to cause a denial of service attack or possible further memory corruption via crafted JavaScript. Note that this is only exploitable if the application usi...
CVE-2020-26878
PUBLISHED: 2020-10-26
Ruckus through 1.5.1.0.21 is affected by remote command injection. An authenticated user can submit a query to the API (/service/v1/createUser endpoint), injecting arbitrary commands that will be executed as root user via web.py.
CVE-2020-26879
PUBLISHED: 2020-10-26
Ruckus vRioT through 1.5.1.0.21 has an API backdoor that is hardcoded into validate_token.py. An unauthenticated attacker can interact with the service API by using a backdoor value as the Authorization header.