Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

6/19/2019
04:45 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
50%
50%

With GDPR's 'Right of Access,' Who Really Has Access?

How a security researcher learned organizations willingly hand over sensitive data with little to no identity verification.

The European Union's General Data Protection Regulation (GDPR) has a provision called "Right of Access," which states individuals have a right to access their personal data. What happens when companies holding this data don't properly verify identities before handing it over?

This became the crux of a case study by James Pavur, DPhil student at Oxford University, who sought to determine how organizations handle requests for highly sensitive information under the Right of Access. To do this, he used GDPR Subject Access Requests to obtain as much data as possible about his fiancée – with her permission, of course – from more than 150 companies.

Shortly after GDPR went into effect last May, Pavur became curious about how social engineers might be able to exploit the Right of Access. "It seemed companies were in a panic over how to implement GDPR," he explains. Out of curiosity he sent a few Subject Access Requests, which individuals can make verbally or in writing to ask for access to their information under GDPR.

In these early requests Pavur only asked for his own data from about 20 companies. He found many didn't ask for sufficient ID before giving it away. Many asked for extensions – GDPR allows 60 days – before sending it because they didn't have processes in place to handle requests. The initial survey took place in fall of 2018, when GDPR was just getting into full swing, Pavur says.

Phase two came in January, when he decided to do a broader experiment requesting his fiancée's information. Over three to four months, Pavur submitted requests to businesses across different sizes and industries to obtain a range of sensitive data, from typical sensitive information like addresses and credit card numbers, to more esoteric data like travel itineraries.

He went into the experiment with three types of data: his fiancée's full name, an old phone number of hers he found online, and a generic email address ([email protected]). All of these, he notes, are things social engineers could easily find. "The threshold for starting the attack was very low," he says. "Every success increases the credibility of your results in the future." Pavur requested her personal data using these initial pieces of information; as companies responded with things he asked for, he could tailor future requests to be better.

"I tried to pretend like I didn't know much about my fiancée," he continues. "I tried to make it as realistic as possible … tried to not allow my knowledge about her to bias me."

Compared to the early stages of his experiment, Pavur found when he requested his fiancée's information, businesses were better at handling the process. Still, the responses were varied, and there wasn't a consistent way of responding to Subject Access Requests, he says.

"I sort of expected that companies would try to verify the identity by using something they already know," he says. For example, he thought they might only accept an email address linked to a registered account. "I thought that was the best mechanism for verifying accounts."

More than 20 out of 150 companies revealed some sort of sensitive information, he found. Pavur was able to get biographical information, passport number, a history of hotels she stayed at; he was also able to verify whether she had accounts with certain businesses, he notes. The means of verifying his fiancée's identity varied by industry: retail companies asked what her last purchase was; travel companies and airlines asked for passport information.

Interestingly, some companies started out strong with requests for identity verification, then caved when Pavur said he didn't feel comfortable providing it. One company asked for a passport number to verify identity; when he refused, they accepted a postmarked envelope. Some businesses improved their verification over time, he adds, but mistakes are still being made: a handful of organizations accidentally deleted his fiancée's account when asked for data. He points to a need for businesses to feel comfortable denying suspicious GDPR requests.

Pavur will be presenting the details of his case study this August at Black Hat USA in a presentation "GDPArrrrr: Using Privacy Laws to Steal Identities."

Related Content:

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Stop Defending Everything
Kevin Kurzawa, Senior Information Security Auditor,  2/12/2020
Small Business Security: 5 Tips on How and Where to Start
Mike Puglia, Chief Strategy Officer at Kaseya,  2/13/2020
5 Common Errors That Allow Attackers to Go Undetected
Matt Middleton-Leal, General Manager and Chief Security Strategist, Netwrix,  2/12/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
6 Emerging Cyber Threats That Enterprises Face in 2020
This Tech Digest gives an in-depth look at six emerging cyber threats that enterprises could face in 2020. Download your copy today!
Flash Poll
How Enterprises Are Developing and Maintaining Secure Applications
How Enterprises Are Developing and Maintaining Secure Applications
The concept of application security is well known, but application security testing and remediation processes remain unbalanced. Most organizations are confident in their approach to AppSec, although others seem to have no approach at all. Read this report to find out more.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-20477
PUBLISHED: 2020-02-19
PyYAML 5.1 through 5.1.2 has insufficient restrictions on the load and load_all functions because of a class deserialization issue, e.g., Popen is a class in the subprocess module. NOTE: this issue exists because of an incomplete fix for CVE-2017-18342.
CVE-2019-20478
PUBLISHED: 2020-02-19
In ruamel.yaml through 0.16.7, the load method allows remote code execution if the application calls this method with an untrusted argument. In other words, this issue affects developers who are unaware of the need to use methods such as safe_load in these use cases.
CVE-2011-2054
PUBLISHED: 2020-02-19
A vulnerability in the Cisco ASA that could allow a remote attacker to successfully authenticate using the Cisco AnyConnect VPN client if the Secondary Authentication type is LDAP and the password is left blank, providing the primary credentials are correct. The vulnerabilities is due to improper in...
CVE-2015-0749
PUBLISHED: 2020-02-19
A vulnerability in Cisco Unified Communications Manager could allow an unauthenticated, remote attacker to conduct a cross-site scripting (XSS) attack on the affected software. The vulnerabilities is due to improper input validation of certain parameters passed to the affected software. An attacker ...
CVE-2015-9543
PUBLISHED: 2020-02-19
An issue was discovered in OpenStack Nova before 18.2.4, 19.x before 19.1.0, and 20.x before 20.1.0. It can leak consoleauth tokens into log files. An attacker with read access to the service's logs may obtain tokens used for console access. All Nova setups using novncproxy are affected. This is rel...