Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

5/11/2020
06:00 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
100%
0%

Thunderbolt Vulnerabilities Could Threaten Millions of PCs

Attackers with physical access to targeted machines could exploit these flaws to access and copy data within minutes, researchers say.

Security researchers have discovered Thunderbolt vulnerabilities that could leave millions of computers exposed to attackers who have the right hardware tools and a few minutes with the machine. The "Thunderspy" attack affects Windows and Linux devices manufactured pre-2019.

Björn Ruytenberg, researcher with Eindhoven University of Technology, says the team found seven vulnerabilities in Intel's Thunderbolt port design and created nine attack scenarios in which someone could bypass defenses and read and copy data on a target machine. This tactic is effective against a computer that has an encrypted hard drive and is locked or set to sleep.

An attacker would need physical access to a Thunderbolt-enabled Windows or Linux system, a screwdriver, and a few off-the-shelf tools to pull this off. Even so, the attack is stealth, meaning a victim would not notice any traces of activity and it does not require any user interaction. 

"Thunderspy works even if you follow best security practices by locking or suspending your computer when leaving briefly, and if your system administrator has set up the device with Secure Boot, strong BIOS and operating system account passwords, and enabled full disk encryption," Ruytenberg explains in a blog post on the findings. "All the attacker needs is 5 minutes alone with the computer, a screwdriver, and some easily portable hardware."

This isn't the first security issue involving Thunderbolt technology, which has prompted a few concerns since it was introduced in 2011. Thunderbolt claimed to accelerate the speed of data transfer to external tools, which it did with Direct Memory Access (DMA)-enabled I/O system. In this kind of "evil maid" attack, Ruytenberg says, Thunderbolt has proven to be a "viable entry point in stealing data from encrypted drives and reading and writing all of system memory."

In early 2019, a group of vulnerabilities known as Thunderclap demonstrated how plugging a malicious peripheral device into a Thunderbolt port could compromise security of a target machine. An attacker could exploit the flaws to bypass security measures and run arbitrary code at the highest level of privilege. Following Thunderclap, Intel introduced Security Levels, an architecture designed to enable users to only authorize trusted Thunderbolt devices.

Unlike Thunderclap, the Thunderspy attacks break both Thunderbolt hardware and protocol security, Ruyterberg explains. Using the "evil maid" threat model, in which the attacker has physical access, as well as varying Security Levels, researchers created arbitrary Thunderbolt device identities, cloned user-authorized Thunderbolt devices, and obtained PCIe connectivity to conduct DMA attacks. They were able to disable Thunderbolt security entirely, he notes. The Thunderspy attacks reportedly break all primary security claims for Thunderbolt 1, 2, and 3.

All Thunderbolt-equipped systems shipped between 2011-2020 are exposed; however, some systems are only partially vulnerable. The flaws can't be fixed with software, he adds. They will affect future standards such as the Thunderbolt 4 and USB 4, and they require silicon redesign.

Devices that are at least partially protected include those manufactured with Kernel DMA protections, a security measure created by Intel after the Thunderclap flaws were disclosed. Ruytenberg notes Kernel DMA protection mitigates some, but not all, of the Thunderspy vulnerabilities. However, as Wired points out, Kernel DMA is not present in machines manufactured before 2019 and it is still not the standard now. Devices running macOS are partially affected by Thunderspy, Ruytenberg explains in a technical writeup of the vulnerabilities.

Ruyterberg shared his findings with Intel in February. Intel confirmed the vulnerabilities and today published a blog post with additional information. It advises following standard security practices, including use of only trusted peripherals and blocking unauthorized physical access.

Intel also notes that major operating systems implemented Kernel DMA protection in 2019. These include Windows (Windows 10 1803 RS4 and later), Linus (kernel 5.x and later), and macOS (macOS 10.12.4 and later). It says researchers did not demonstrate successful DMA attacks against systems with these protections enabled. Still, Microsoft notes that its own protections don't block DMA attacks via 1394/FireWire, PCMCIA, CardBus, and ExpressCard.

Should You Be Worried?

While it's true millions of devices could be affected by these vulnerabilities, industry watchers say chances of exploitation are slim. "On the scope of potential threats, this one is relatively minor," says Jack Gold, founder and principal analyst at J.Gold Associates. An attacker would need access to the target machine and to plug into the port, making this a very targeted effort.

"Most viruses are spread by emails, phishing attacks, things of that nature," he continues. "This is a hard thing to spread." It's unappealing to an attacker hoping for high value and little work. There are many other exploits and attack methods available to cybercriminals seeking large amounts of data and financial gain. For most, this level of planning wouldn't be worth it.

That said, Thunderspy could prove useful to an adversary who knows what they're after and who they need to target. "It's hard to see where there's real benefit to people doing this unless you know there's a machine that has information you need … someone who has specific valuable information [you] want to get to," Gold explains. For CEOs, CFOs, and other high-value targets, a solution could be an upgrade to a device with Kernel DMA protection in place, or they could simply keep a close eye on their machines.

Those whose devices are lost or stolen, however, may have greater cause for concern. Thunderspy can crack password-protected laptops, which could put a great deal of sensitive data at risk if they fall into the wrong hands.

Related Content:

 
 
Learn from industry experts in a setting that is conducive to interaction and conversation about how to prepare for that "really  bad day" in cybersecurity. Click for more information and to register
Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
Hacking Yourself: Marie Moe and Pacemaker Security
Gary McGraw Ph.D., Co-founder Berryville Institute of Machine Learning,  9/21/2020
Startup Aims to Map and Track All the IT and Security Things
Kelly Jackson Higgins, Executive Editor at Dark Reading,  9/22/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15208
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can ...
CVE-2020-15209
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one....
CVE-2020-15210
PUBLISHED: 2020-09-25
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and ...
CVE-2020-15211
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices f...
CVE-2020-15212
PUBLISHED: 2020-09-25
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `outpu...