Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

End of Bibblio RCM includes -->
6/25/2021
05:20 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail

New CPU Baseline for Windows 11 Will Ensure Better Security, Microsoft Says

Redmond's latest OS will run only on systems with TPM 2.0 chips.

One of the key takeaways from Microsoft's Windows 11 announcement this week is the company's new baseline hardware security requirements for running the operating system.

Related Content:

New Techniques Emerge for Abusing Windows Services to Gain System Control

Special Report: Building the SOC of the Future

New From The Edge: Data Privacy Is in 23andMe CSO's DNA

The new OS is designed to run only on systems that include Trusted Platform Module (TPM) 2.0, a security chip for securely storing keys and other secrets for authenticating a system when booting up. That means the OS will install only on systems based on eighth-generation and newer Intel chips and on AMD Ryzen 2000 processors and later. These are processors that started shipping about four years ago and integrate the TPM 2.0 chip.

David Weston, director of Microsoft's enterprise and operating system security, says what the company has done is to set a CPU baseline to ensure the best experience for Windows users that goes beyond just security. "This is not a security-centric floor," Weston says. "This is a general experience [CPU] floor to make sure that Windows 11 meets expectations." Every single processor that Microsoft has listed as being compatible with Windows 11 has a TPM 2.0 chip on it already, he says.

All Windows-certified systems since 2015 have required a TPM chip, so in that sense Microsoft's requirements for Windows 11 is not new. With TPM 2.0, however, Microsoft is setting a stronger security baseline for its new operating system. TPM 2.0, for instance, supports Secure Hash Algorithm 2 256 (SHA-2 256), a much stronger cryptographic algorithm compared with the SHA-1 protocol in previous TPM 1.2 chips.

The TPM 2.0 chip will help ensure security backed by a hardware-root-of-trust, Weston says. Its purpose is to provide a secure storage space for encryption keys, user credentials, and other secrets so attackers cannot access the data. Core Windows 11 security capabilities such as Windows Hello for passwordless logins and a zero-trust feature for identifying Windows devices to cloud services depend on the trusted platform module, he says. In addition, it supports the core Secure boot capability in Windows that ensures a system boots using only software trusted by the original equipment manufacturer. "TPM gets to measure the hashes of all the code that boots the system, so it is almost doing a supply chain verification to ensure the system boots at high integrity," Weston says. This is a requirement for all security features that come with the system, such as Windows Defender, he says.

The higher-baseline hardware security requirements will allow the features that are available with Windows 11 to work better. For instance, having a separate hardware-based security domain on the system ensures that if the system does get compromised, attackers don't have a way to access keys and other pieces of information. "If you store keys in a TPM, they can't be dumped by a credential tool and then used to moved laterally," Weston says.

Higher hardware security requirements also ensure better performance, he notes. As one example, he points to a Microsoft technology called Control Flow Guard, which is designed to mitigate threats related to memory corruption issues. While the technology is great for security, it also slowed things down when it ran only in software. By working with Intel and AMD, Microsoft was able to move the checks associated with Control Flow Guard directly to the CPU, which has allowed for better speed and security than when it ran in software alone, Weston says.

The hardware requirements for Windows 11 also are consistent with Microsoft's plan to eventually make features that are available with its so-called secured-core PCs initiative available to more Windows users. Secured-core systems are devices designed for use in critical infrastructure sectors such as financial services, government, and healthcare. The systems feature certain minimal hardware security requirements that are designed to protect against targeted firmware attacks. The systems also have several security technologies enabled by default — such as BitLocker encryption, Defender System Guard, and Windows Hello. According to Weston, data that Microsoft has collected has shown these devices to be twice as resilient to malware attacks than regular PCs. The new hardware requirements bring many of these features to mainline Windows 11 users, Weston says.

"We have spent a lot of time not building checkbox features but really looking at the threat landscape and how things have changed over the past 18 months," he says. "We have built a security story that would protect all of our users [from new threats] without affecting their productivity or experience."

Jai Vijayan is a seasoned technology reporter with over 20 years of experience in IT trade journalism. He was most recently a Senior Editor at Computerworld, where he covered information security and data privacy issues for the publication. Over the course of his 20-year ... View Full Bio

Comment  | 
Print  | 
More Insights
//Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
News
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
Commentary
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Everything You Need to Know About DNS Attacks
It's important to understand DNS, potential attacks against it, and the tools and techniques required to defend DNS infrastructure. This report answers all the questions you were afraid to ask. Domain Name Service (DNS) is a critical part of any organization's digital infrastructure, but it's also one of the least understood. DNS is designed to be invisible to business professionals, IT stakeholders, and many security professionals, but DNS's threat surface is large and widely targeted. Attackers are causing a great deal of damage with an array of attacks such as denial of service, DNS cache poisoning, DNS hijackin, DNS tunneling, and DNS dangling. They are using DNS infrastructure to take control of inbound and outbound communications and preventing users from accessing the applications they are looking for. To stop attacks on DNS, security teams need to shore up the organization's security hygiene around DNS infrastructure, implement controls such as DNSSEC, and monitor DNS traffic
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2023-33196
PUBLISHED: 2023-05-26
Craft is a CMS for creating custom digital experiences. Cross site scripting (XSS) can be triggered by review volumes. This issue has been fixed in version 4.4.7.
CVE-2023-33185
PUBLISHED: 2023-05-26
Django-SES is a drop-in mail backend for Django. The django_ses library implements a mail backend for Django using AWS Simple Email Service. The library exports the `SESEventWebhookView class` intended to receive signed requests from AWS to handle email bounces, subscriptions, etc. These requests ar...
CVE-2023-33187
PUBLISHED: 2023-05-26
Highlight is an open source, full-stack monitoring platform. Highlight may record passwords on customer deployments when a password html input is switched to `type="text"` via a javascript "Show Password" button. This differs from the expected behavior which always obfuscates `ty...
CVE-2023-33194
PUBLISHED: 2023-05-26
Craft is a CMS for creating custom digital experiences on the web.The platform does not filter input and encode output in Quick Post validation error message, which can deliver an XSS payload. Old CVE fixed the XSS in label HTML but didn’t fix it when clicking save. This issue was...
CVE-2023-2879
PUBLISHED: 2023-05-26
GDSDB infinite loop in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via packet injection or crafted capture file