Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint

2/6/2019
04:00 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
50%
50%

Google Tackles Gmail Spam with Tensorflow

Tensorflow, Google's open-source machine learning framework, has been used to block 100 million spam messages.

Google reports Gmail is blocking 100 million extra spam emails per day following the implementation of Tensorflow, its open source, machine-learning framework, to supplement existing spam detection.

Machine learning isn't new to Gmail: Google has long been using machine-learning models and rule-based filters to detect spam, and its current protections have reportedly prevented more than 99.9% of spam, phishing, and malware from landing in Gmail inboxes. Today's attackers seek new ways to hit Gmail's 1.5 billion users and 5 million business clients with advanced threats.

Considering the size of Gmail's user base, 100 million extra messages doesn't seem like much. However, since it already blocks so much, the last remaining threats are toughest to identify.

Enter TensorFlow, an open source software library that developers can use to build artificial intelligence (AI) tools. It was developed by researchers and engineers from the Google Brain team within its AI division in 2015, and is used among companies including Google, Intel, SAP, Airbnb, and Qualcomm.

"We're now blocking spam categories that used to be very hard to detect," said Neil Kumaran, product manager for counter-abuse technology, in a blog post on the news.

TensorFlow protections complement Google's machine learning and rule-based protections to try and block the last 0.1% of spam emails from getting through. It supplements current detection by finding image-based messages, emails with hidden embedded content, and messages from newly created domains that may try to hide a low volume of spam emails within legitimate traffic.

Unlike rule-based spam filters, machine-learning models hunt for patterns in unwanted emails that people may not catch. Every email has thousands of defining signals, each of which can help determine whether it's legitimate. TensorFlow helps weed through the chaos and spot spammy emails that seem real, as well as emails that have spam-like qualities but are authentic.

Kumaran says TensorFlow also helps with personalizing spam protections for each user. The same email could be considered spam to one person but important information to another.

Applying machine learning at scale can be complex and time-consuming. Google is aiming to simplify the process with TensorFlow, which also adds the flexibility to train and experiment with different models at the same time in order to choose the most effective, instead of doing so one at a time.

Still, Gmail security will continue to pose a major challenge for Google. A new report shows how attackers are abusing "dots don't matter," a longstanding Gmail security feature, to create fraudulent accounts on websites and use variations of the same email address.

Confidential Computing: Google Buckles Down on Asylo
Google reports it's investing in confidential computing, which aims to secure applications and data in use, even from privileged access and cloud providers. In addition to today's Gmail news, Google has published an update on Asylo, an open source framework it introduced in May 2018 to simplify the process of creating and using enclaves on Google Cloud and other platforms.

The adoption of confidential computing has been slow going due to dependence on specific hardware, complexity around deployment, and lack of development tools to create and run applications in these environments. Asylo makes it easier to build applications that run in trusted execution environments (TEEs) with different platforms – for example, Intel SGX.

Google anticipates in the future Aslo will be integrated into developer pipelines, and users will able to launch Asylo apps directly from commercial marketplaces. However, confidential computing is still an emerging technology and enclaves lack established design practices.

To accelerate its use, Google is starting a Confidential Computing Challenge, a contest in which developers can create new use cases. Applicants have until April 1 to submit essays describing a novel use case for the tech.

Related Content:

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/27/2020
Chinese Attackers' Favorite Flaws Prove Global Threats, Research Shows
Kelly Sheridan, Staff Editor, Dark Reading,  10/27/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-27974
PUBLISHED: 2020-10-28
NeoPost Mail Accounting Software Pro 5.0.6 allows php/Commun/FUS_SCM_BlockStart.php?code= XSS.
CVE-2020-27975
PUBLISHED: 2020-10-28
osCommerce Phoenix CE before 1.0.5.4 allows admin/define_language.php CSRF.
CVE-2020-27976
PUBLISHED: 2020-10-28
osCommerce Phoenix CE before 1.0.5.4 allows OS command injection remotely. Within admin/mail.php, a from POST parameter can be passed to the application. This affects the PHP mail function, and the sendmail -f option.
CVE-2020-27978
PUBLISHED: 2020-10-28
Shibboleth Identify Provider 3.x before 3.4.6 has a denial of service flaw. A remote unauthenticated attacker can cause a login flow to trigger Java heap exhaustion due to the creation of objects in the Java Servlet container session.
CVE-2020-22552
PUBLISHED: 2020-10-28
The Snap7 server component in version 1.4.1, when an attacker sends a crafted packet with COTP protocol the last-data-unit flag set to No and S7 writes a var function, the Snap7 server will be crashed.