Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint Security

12/16/2019
10:05 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

With Plundervolt, an Intel Processor's Secure Enclave Is No Longer Secure

Major hardware vulnerability can allow the changing of information that is supposedly stored as secure in the chip's Secure Enclave.

International researchers have discovered a major hardware vulnerabilitythat they call Plundervolt in most of the modern Intel processors from Skylake onward. It can allow the changing of information that is supposedly stored as secure in the chip's Secure Enclave.

The researchers have a web page with a snazzy logo (designed by Mike Stimpson) dedicated to the vulnerability (CVE-2019-11157) where they attempt to answer some general questions about it.

The vulnerability has been known since June by the group who then informed Intel. It's taken Intel until now to get a patch out to mitigate things. Admittedly, the problems that Intel had to navigate in a solution composed of both microcode (CPU firmware) and BIOS updates were non-trivial.

The method used in the attack is similar to how a gamer might "overclock" a CPU for faster performance in that it uses a privileged power/clock management feature (the CPU's Dynamic Voltage and Frequency Scaling) to do its dirty work: inject faults into a trusted execution environment. These faults can then be actively exploited later by the attacker once the malware program leaves the enclave and is running in its normal space. Thus Plundervolt does not break the SGX in the usual sense, instead it poisons the output.

By the way, this is just the opposite of recent speculative-style SGX attacks like Foreshadow or Spectre. Those methods allow the attacker to read data from SGX enclave memory (i.e. attacks the confidentiality). As the researchers note, "Plundervolt achieves the complementary operation, namely changing values in SGX-protected memory (i.e. attacks the integrity)".

The problem affects many users, not just those using SGX for cryptography programs for example. The group says that Plundervolt can also cause memory safety misbehavior in certain scenarios. For example, the paper finds that out-of-bounds accesses may arise when an attacker faults multiplications emitted by the compiler for array element indices or pointer arithmetic.

They conclude that Plundervolt can break a processor's integrity guarantees, affecting even securely written code. They also claim to show that Plundervolt may affect SGX's attestation functionality, which undermines the building blocks underpinning the security of Intel's SGX ecosystem. The Gang of Six says that, "this represents the first practical attack that directly breaches the integrity guarantees in the Intel SGX security architecture."

Yow.

But there is a bit of upside to all of this. Evidently, Plundervolt can't be exploited remotely. Pointing the victim to malware with JavaScript in it won't get the vulnerability to work.

Plundervolt also doesn't work from within virtualized environments, such as virtual machines and cloud computing services, because that vector was considered by Intel in the design of the SGX architecture. At least in this version of Plundervolt (which doesn't break that architecture), it prevents that kind of exploit.

So, those wanting to close off SGX's possible corruption should patch both the CPU microcode and the BIOS of a machine. Nothing less than that will mitigate the vulnerability.

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
When It Comes To Security Tools, More Isn't More
Lamont Orange, Chief Information Security Officer at Netskope,  1/11/2021
US Capitol Attack a Wake-up Call for the Integration of Physical & IT Security
Seth Rosenblatt, Contributing Writer,  1/11/2021
IoT Vendor Ubiquiti Suffers Data Breach
Dark Reading Staff 1/11/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
2020: The Year in Security
Download this Tech Digest for a look at the biggest security stories that - so far - have shaped a very strange and stressful year.
Flash Poll
Assessing Cybersecurity Risk in Today's Enterprises
Assessing Cybersecurity Risk in Today's Enterprises
COVID-19 has created a new IT paradigm in the enterprise -- and a new level of cybersecurity risk. This report offers a look at how enterprises are assessing and managing cyber-risk under the new normal.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-3166
PUBLISHED: 2021-01-18
An issue was discovered on ASUS DSL-N14U-B1 1.1.2.3_805 devices. An attacker can upload arbitrary file content as a firmware update when the filename Settings_DSL-N14U-B1.trx is used. Once this file is loaded, shutdown measures on a wide range of services are triggered as if it were a real update, r...
CVE-2020-29446
PUBLISHED: 2021-01-18
Affected versions of Atlassian Fisheye & Crucible allow remote attackers to browse local files via an Insecure Direct Object References (IDOR) vulnerability in the WEB-INF directory. The affected versions are before version 4.8.5.
CVE-2020-15864
PUBLISHED: 2021-01-17
An issue was discovered in Quali CloudShell 9.3. An XSS vulnerability in the login page allows an attacker to craft a URL, with a constructor.constructor substring in the username field, that executes a payload when the user visits the /Account/Login page.
CVE-2021-3113
PUBLISHED: 2021-01-17
Netsia SEBA+ through 0.16.1 build 70-e669dcd7 allows remote attackers to discover session cookies via a direct /session/list/allActiveSession request. For example, the attacker can discover the admin's cookie if the admin account happens to be logged in when the allActiveSession request occurs, and ...
CVE-2020-25533
PUBLISHED: 2021-01-15
An issue was discovered in Malwarebytes before 4.0 on macOS. A malicious application was able to perform a privileged action within the Malwarebytes launch daemon. The privileged service improperly validated XPC connections by relying on the PID instead of the audit token. An attacker can construct ...