Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Endpoint Security

1/30/2020
10:00 AM
Larry Loeb
Larry Loeb
Larry Loeb
50%
50%

All Your Intel L1 Cache Belongs to CacheOut

Once again, a novel 'speculative execution side-channel' attack has been discovered by researchers.

Once again, a novel "speculative execution side-channel" attack has been discovered by researchers. They show in their paper on the attackthat it will work against modern Intel microprocessors.

Intel refers to the vulnerability as L1D Eviction Sampling, since it can enable an attacker to read from the CPU's Level 1 Data Cache. CacheOut/L1D can leak information from other processes running on the same thread, or across threads on the same CPU core.

The attack has been given the moniker of "CacheOut" by the researchers and there is a snappy website with logo that is devoted to it. As of yet, there have been no signs of this style of attack in the wild. CVE-2020-0549 has been assigned to it, with a CVSS score of 6.5 (Medium). The need for an attacker to have local access to the target for the exploit to succeed no doubt contributed to the lowering of the severity score.

The researchers say that the AMD line of microprocessors is not affected by CacheOut, since AMD does not offer any feature similar to Intel's Transactional Synchronization Extensions (TSX). TSX is there so the processor can guarantee that the instructions that form a transaction either all execute to completion or none of them will execute at all.

Arm and IBM do have a feature similar to Intel TSX, but the researchers are currently unaware of whether any of their products are affected. They are also unaware of any other attack vectors to exploit CacheOut.

The extent of the vulnerability extends across the entire chip architecture. CacheOut exploits the hardware vulnerabilities that were uncovered to dump the contents of Intel Security Guard Extensions (SGX) enclaves, for example. As such, any information stored inside the enclave can be potentially leaked by CacheOut. That's not supposed to be happening.

There are no data trails left after exploitation, as well. CacheOut does not leave any traces in traditional log files.

Virtual machines are also vulnerable to this. CacheOut exploits hardware security vulnerabilities inside the processor to leak information from both the virtual machine manager (hypervisor) and co-resident virtual machines, which is one of the things that the use of SGX was supposed to prevent.

The techniques recommended by Intel to mitigate previous similar attacks (ZombleLoad, for example) don't work in this case. This mitigation is incomplete, as the researchers showed that they can force the victim's data out of the L1-D Cache into the microarchitectural buffers after the operating system clears them. They showed that they could subsequently leak the contents of the buffers and obtain the victim's data.

Intel says it is working on microcode patches to fix the vulnerability. But the open question is how much these sort of patches -- when they come -- will affect the overall performance of the microprocessor.

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 9/25/2020
9 Tips to Prepare for the Future of Cloud & Network Security
Kelly Sheridan, Staff Editor, Dark Reading,  9/28/2020
Attacker Dwell Time: Ransomware's Most Important Metric
Ricardo Villadiego, Founder and CEO of Lumu,  9/30/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-20902
PUBLISHED: 2020-10-01
Upgrading Crowd via XML Data Transfer can reactivate a disabled user from OpenLDAP. The affected versions are from before version 3.4.6 and from 3.5.0 before 3.5.1.
CVE-2019-20903
PUBLISHED: 2020-10-01
The hyperlinks functionality in atlaskit/editor-core in before version 113.1.5 allows remote attackers to inject arbitrary HTML or JavaScript via a Cross-Site Scripting (XSS) vulnerability in link targets.
CVE-2020-25288
PUBLISHED: 2020-09-30
An issue was discovered in MantisBT before 2.24.3. When editing an Issue in a Project where a Custom Field with a crafted Regular Expression property is used, improper escaping of the corresponding form input's pattern attribute allows HTML injection and, if CSP settings permit, execution of arbitra...
CVE-2020-25781
PUBLISHED: 2020-09-30
An issue was discovered in file_download.php in MantisBT before 2.24.3. Users without access to view private issue notes are able to download the (supposedly private) attachments linked to these notes by accessing the corresponding file download URL directly.
CVE-2020-25830
PUBLISHED: 2020-09-30
An issue was discovered in MantisBT before 2.24.3. Improper escaping of a custom field's name allows an attacker to inject HTML and, if CSP settings permit, achieve execution of arbitrary JavaScript when attempting to update said custom field via bug_actiongroup_page.php.