Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

News

11/7/2008
08:52 AM
George Crump
George Crump
Commentary
50%
50%

SSD's Latency Impact

In our last entry we talked about latency and what it was. We also discussed how storage system manufacturers are trying to overcome latency and performance issues of mechanical drives by using techniques like making the drives faster by using higher RPM drives, array groups with a high drive count, short-stroking those drives, wide striping those drives, and increasing the number of application servers

In our last entry we talked about latency and what it was. We also discussed how storage system manufacturers are trying to overcome latency and performance issues of mechanical drives by using techniques like making the drives faster by using higher RPM drives, array groups with a high drive count, short-stroking those drives, wide striping those drives, and increasing the number of application servers for improved parallelism.All of these techniques cost money, are not very green, and in many cases are more expensive than simply using SSD. Not to mention that they don't typically come close to SSD performance. The result has been the existence of standalone, purpose-built SSD solutions like those from Texas Memory Systems, Solid Data Systems, and Violin Memory, or the manufacturer adding SSD in a "drive-like" manner to its current storage systems.

The speed of SSD technology, especially DRAM, changes the latency focus away from the actual storage medium, as it has now been optimized, and onto the storage system's infrastructure, which is suddenly a lot slower than the storage media. For vendors that incorporate SSD into existing drive enclosures, the performance of the shelf itself becomes a problem, the performance of the processors in the controllers becomes a problem, and an incorrectly sized cache (too big or too small) becomes a problem.

Another factor is that the software load on the controller becomes an issue. For the past several years, storage manufacturers have been piling on features to the storage controller like snapshots, replication, data deduplication, and others. All of these features take computing resources away from responding to storage I/O requests, which worsens system latency.

The result is that while the SSD technology going into the solution may be fast, simply adding SSD to your storage system may not dramatically improve performance like it should. Standalone, purpose-built SSD systems offer lower latency because these vendors have built systems from the chip up that are designed to deliver on the low latency of SSD.

In our next entry, we will examine those differences and how storage manufacturers will need to alter their delivery of SSD technology. Then we will wrap up with capacity management on SSDs. At the cost of SSD technology, the only good SSD is a FULL SSD.

Join us for our upcoming Webcast SSD: Flash vs. DRAM...and the winner is?

Track us on Twitter: http://twitter.com/storageswiss.

Subscribe to our RSS feed.

George Crump is founder of Storage Switzerland, an analyst firm focused on the virtualization and storage marketplaces. It provides strategic consulting and analysis to storage users, suppliers, and integrators. An industry veteran of more than 25 years, Crump has held engineering and sales positions at various IT industry manufacturers and integrators. Prior to Storage Switzerland, he was CTO at one of the nation's largest integrators.

 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 8/10/2020
Researcher Finds New Office Macro Attacks for MacOS
Curtis Franklin Jr., Senior Editor at Dark Reading,  8/7/2020
Exploiting Google Cloud Platform With Ease
Dark Reading Staff 8/6/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win an Amazon Gift Card! Click Here
Latest Comment: They said you could use Zoom anywhere.......
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Changing Face of Threat Intelligence
The Changing Face of Threat Intelligence
This special report takes a look at how enterprises are using threat intelligence, as well as emerging best practices for integrating threat intel into security operations and incident response. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-13285
PUBLISHED: 2020-08-13
For GitLab before 13.0.12, 13.1.6, 13.2.3 a cross-site scripting vulnerability exists in the issue reference number tooltip.
CVE-2020-16087
PUBLISHED: 2020-08-13
An issue was discovered in Zalo.exe in VNG Zalo Desktop 19.8.1.0. An attacker can run arbitrary commands on a remote Windows machine running the Zalo client by sending the user of the device a crafted file.
CVE-2020-17463
PUBLISHED: 2020-08-13
FUEL CMS 1.4.7 allows SQL Injection via the col parameter to /pages/items, /permissions/items, or /navigation/items.
CVE-2019-16374
PUBLISHED: 2020-08-13
Pega Platform 8.2.1 allows LDAP injection because a username can contain a * character and can be of unlimited length. An attacker can specify four characters of a username, followed by the * character, to bypass access control.
CVE-2020-13280
PUBLISHED: 2020-08-13
For GitLab before 13.0.12, 13.1.6, 13.2.3 a memory exhaustion flaw exists due to excessive logging of an invite email error message.