News

6/10/2011
03:46 PM
George Crump
George Crump
Commentary
50%
50%

Big Data A Big Backup Challenge

Backing up Big Data requires a system that is fast, cost effective, and reliable. These are conflicting terms in the world of storage.

Big Data is, well, big, and size is not the only challenge it places on backup. It also is a backup application's worst nightmare because many Big Data environments consist of millions or even billions of small files. How do you design a backup infrastructure that will support the Big Data realities?

First, examine what data does not have to be backed up at all because it can be easily regenerated from another system that is already being backed up. A good example is report data generated from a database.

Once this data is identified, exclude it. Next, move on to the real problem at hand--unique data that can't be re-created. This is often discrete file data that is feed into the environment via devices or sensors. It is essentially point-in-time data that can't be regenerated. This data is often copied within the Big Data environment so that it can be safely analyzed. As a result, there can be a fair amount of redundancy in the Big Data environment. This is an ideal role for disk backup devices. They are better suited for the small file transfers and, with deduplication, can eliminate redundancy and compress much of the data to optimize backup capacity.

Effective optimization is critical since Big Data environments are measured in the 100's of terabytes and will soon be measured in the dozens of petabytes. It is also important to consider just how far you want to extend disk backup's role in this environment.

Clearly deduplicated disk is needed, but it probably should be used in conjunction with tape--not in replacement of it. Again, often a large section of this data can't be regenerated. Loss of this data is permanent and potentially ruins the Big Data sample. You can't be too careful and, at the same time, you have to control capacity costs so that the value of the decisions that Big Data allows are not overshadowed by the expense of keeping the data that supports them. We suggest a Big Data backup strategy that includes a large tier of optimized backup disk to store the near-term data set for as long as possible, seven to 10 years worth of data being ideal, then using tape for the decades worth of less frequently accessed data.

Alternatively you could go with the suggestion we made in a recent article "Tape's Role in Big Data" and combine the two into a single active archive--essentially a single file system that seamlessly marries all of these media types. This would consist of fast but low capacity (by Big Data standards) primary disk for data ingestion and active analytical processing, optimized disk for more near term data that is not being analyzed at that moment, and tape for long-term storage. In this environment data can be sent to all tiers of storage as it is created or modified so that less or even no backups need to be done.

Big Data is a big storage challenge, not only to store the data but to put it on a fast enough platform that meaningful analytics can be run while at the same time, being cost effective and reliable. These are conflicting terms in the world of storage. Resolving that conflict is going to require a new way of doing things.

Follow Storage Switzerland on Twitter

George Crump is lead analyst of Storage Switzerland, an IT analyst firm focused on the storage and virtualization segments. Storage Switzerland's disclosure statement.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Equifax CIO, CSO Step Down
Dark Reading Staff 9/15/2017
Cloud Security's Shared Responsibility Is Foggy
Ben Johnson, Co-founder and CTO, Obsidian Security,  9/14/2017
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Security Vulnerabilities: The Next Wave
Just when you thought it was safe, researchers have unveiled a new round of IT security flaws. Is your enterprise ready?
Flash Poll
The Dark Reading Security Spending Survey
The Dark Reading Security Spending Survey
Enterprises are spending an unprecedented amount of money on IT security where does it all go? In this survey, Dark Reading polled senior IT management on security budgets and spending plans, and their priorities for the coming year. Download the report and find out what they had to say.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.