Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Cloud

3/1/2018
10:30 AM
Tom Gillis
Tom Gillis
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

What Enterprises Can Learn from Medical Device Security

In today's cloud-native world, organizations need a highly distributed approach that ties security to the workload itself in order to prevent targeted attacks.

Recently, I had an enlightening conversation with a customer who works at a medical device manufacturer of laboratory diagnostic equipment. This company has thousands of medical devices in the field — visualize racks of test tubes, all computerized with a large instrument and a Windows system that's running the test equipment in the hospital.

Scott T. Nichols is responsible for product privacy and security at this company, which means it's his job to figure out how that data — each patient's name, Social Security number, and test results (basically, the most sensitive data there is) — remains protected.

The interesting thing about this situation is that these devices are computers that sit on a trustworthy network in someone else's data center or network. That means the company doesn't control the firewall, so there's a lot of risk involved in keeping its devices secure. Think about the latest outbreak of ransomware. What can this company do to assure customers and shareholders that its equipment (and everyone who uses it) is not vulnerable to these attacks?

And in this case, it's not just malware. There's the very real threat of targeted attacks. In the hospital environment, we see attacks that are directed at individual doctors, hospital administrators, and other staff members. These attacks come from within — not a bad attacker coming over a firewall. Consider this common scenario: A field tech comes in to get a report using a USB stick and that drive is infected, so even though it's separate from the network, it provides a way for a sophisticated attack to get in. Therefore, even in a closed-circuit system with an isolated network for medical devices, malware can still get in.

"The threat is people," says Nichols. "People are the weakest link." He's right: People are always the weakest link and always will be. They are trusting, hardworking, and earnest — they don't realize what they are doing is oftentimes propagating infection.

How can this company respond? As Nichols figured out, it needs a new approach to security — one that doesn't protect the network alone or rely on a physical perimeter.

Thus, the company implemented an "onion" strategy, with several layers of protection attached to an individual workload. At the heart of this strategy is the data layer, where it uses encryption of data on the device itself. Think of it as the crown in a castle that needs to be protected. Imagine building a safe for the crown inside the castle and then a moat all around the castle. Protecting the data layer is the network layer, where firewalling turns network security on and off. After the network layer is the server layer, which allows only applications that are recognized. On top of that is the user layer, where access controls allow the company to see who logged in and who logged out, check their user ID, and add password complexity requirements. They also put protections on the back end.

Why was I so fascinated with this example? It's obvious: The parallel is very similar to what the enterprise faces as it moves to the cloud. The workload is put in an environment that the enterprise doesn’t control. The traditional controls for security are dissolving and the self-service model has made it even worse, igniting a blurred separation of duties.

The enterprise needs a new model. It needs to rip a page from the playbook of this medical device company and implement the same kind of highly distributed security approach that's tied to the workload itself. I'm hardly the only one who's thinking this. A recently published Gartner report says security needs to be attached to the workload and to be multilayered — looking at data, network, computing, and users.

Migrating a workload to the cloud is like moving from one house to another: If you simply box up everything and move it to the new address, you are missing a major opportunity to clean up the old and make way for the new, an opportunity to streamline operations and to improve the effectiveness of your defenses. In the worst case, migrating a workload without revisiting the security controls can expose new vulnerabilities that were never even possible before, such as the often-experienced data leakage that comes from a misconfigured S3 bucket on Amazon that publishes sensitive data to the public Internet.  

In a cloud-native world, we have an opportunity to implement security controls that are:

  1. Fully automated
  2. Host-centric
  3. Auto-scaling
  4. Immutable
  5. Independent of infrastructure

The multitenant public cloud has revolutionized IT. For the security team, it's a new world with a new set of constraints and a new set of possibilities. The medical device community has been operating in this mindset for some time, and there are lessons to be learned from them on building a cloud-native security architecture.  

Related Content:

 

Black Hat Asia returns to Singapore with hands-on technical Trainings, cutting-edge Briefings, Arsenal open-source tool demonstrations, top-tier solutions and service providers in the Business Hall. Click for information on the conference and to register.

Tom Gillis co-founded Bracket Computing with the goal of delivering enterprise computing driven by business needs, not hardware limitations. Prior to Bracket, Tom was vice present/general manager of Cisco's Security Technology Group, leading business units responsible for ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 7/9/2020
Omdia Research Launches Page on Dark Reading
Tim Wilson, Editor in Chief, Dark Reading 7/9/2020
4 Security Tips as the July 15 Tax-Day Extension Draws Near
Shane Buckley, President & Chief Operating Officer, Gigamon,  7/10/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal, a Dark Reading Perspective
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
The Threat from the Internetand What Your Organization Can Do About It
The Threat from the Internetand What Your Organization Can Do About It
This report describes some of the latest attacks and threats emanating from the Internet, as well as advice and tips on how your organization can mitigate those threats before they affect your business. Download it today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-15105
PUBLISHED: 2020-07-10
Django Two-Factor Authentication before 1.12, stores the user's password in clear text in the user session (base64-encoded). The password is stored in the session when the user submits their username and password, and is removed once they complete authentication by entering a two-factor authenticati...
CVE-2020-11061
PUBLISHED: 2020-07-10
In Bareos Director less than or equal to 16.2.10, 17.2.9, 18.2.8, and 19.2.7, a heap overflow allows a malicious client to corrupt the director's memory via oversized digest strings sent during initialization of a verify job. Disabling verify jobs mitigates the problem. This issue is also patched in...
CVE-2020-4042
PUBLISHED: 2020-07-10
Bareos before version 19.2.8 and earlier allows a malicious client to communicate with the director without knowledge of the shared secret if the director allows client initiated connection and connects to the client itself. The malicious client can replay the Bareos director's cram-md5 challenge to...
CVE-2020-11081
PUBLISHED: 2020-07-10
osquery before version 4.4.0 enables a priviledge escalation vulnerability. If a Window system is configured with a PATH that contains a user-writable directory then a local user may write a zlib1.dll DLL, which osquery will attempt to load. Since osquery runs with elevated privileges this enables l...
CVE-2020-6114
PUBLISHED: 2020-07-10
An exploitable SQL injection vulnerability exists in the Admin Reports functionality of Glacies IceHRM v26.6.0.OS (Commit bb274de1751ffb9d09482fd2538f9950a94c510a) . A specially crafted HTTP request can cause SQL injection. An attacker can make an authenticated HTTP request to trigger this vulnerabi...