Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Cloud

10/14/2020
12:45 PM
50%
50%

Intel's Ice Lake Beefs Up CPU Security for Cloud Workloads

The third-generation Xeon processors build in hardware security features to provide extra protection to data in transit, at rest, and in use.

The latest Intel mainstream processor for servers, code-named Ice Lake, offers a variety of hardware security capabilities, including a capability for creating up to 1TB protected data stores and a reduced attack surface area, the company announced on Oct. 14.

The features will allow workloads in data centers and the cloud to be secured more completely, allowing applications such as secure shared analysis of sensitive data, while minimizing the overhead of security capabilities. The last line of Xeon processors adds widespread support for Intel's Software Guard Extensions (Intel SGX) to its mainstream server processors, as well as some new technologies, such as Total Memory Encryption and more accelerated cryptographic processors, to protect data in transit, at rest, and as part of a workload.

Related Content:

Multiparty Encryption Allows Companies to Solve Security-Data Conundrum

2020 State of Cybersecurity Operations and Incident Response

New on The Edge: What Is End-to-End Encryption?

The processor security features allow companies to better protect data throughout its use, secure critical secrets such as credentials, and perform shared analysis on sensitive data, says Ron Perez, an Intel fellow with the data platforms group.

"It goes back to protecting those credentials, those cryptographic keys that are in wide use today, really the only means of protecting those with a high degree of assurance. ... Technology like SGX allows you to instantiate a similar type of protection capability virtually, wherever you need it, to protect just that piece of data."

The expanded accessibility of Intel SGX along with the newer security features will give companies the ability to protect data throughout a workload's life cycle, securing it at rest but also while being used in memory as part of a "confidential computing" model, Intel stated. Healthcare companies and financial service providers need such technologies to better protect data in the public cloud as required by regulations.

Intel aims to reduce any performance issues that security features often require. The move is driven by businesses' need for cloud and software-defined infrastructure, edge computing, and enabling machine learning on sensitive data, Lisa Spelman, corporate vice president of the data platforms group for Intel, said in a video announcement of the processor improvements.

"Concerns for digital security, safety, privacy, and an expanding attack surface requires a new approach to protecting data," she said. "Hardware sits at the root of the solution, because addressing security challenges is easier when you start with a trusted foundation you can build resilient solutions on top of."

The features allow software developers to implement a trusted execution environment that protects not only key data but significant data sets as well. Intel SGX allows up to 1TB of data to be included in a secure enclave, a protected memory space protected at the processor level by encryption and hardware keys. The Ice Lake processor also includes new security features, such as Total Memory Encryption for ensuring all data accessed by the CPU is encrypted, and cryptographic accelerators to reduce the overhead of security functions.

Such integrated and layered security technology is necessary because, as software security has become better, attackers have started looking at lower levels of the software and technology stack to find vulnerabilities, Anil Rao, vice president and general manager for Intel's data platforms security and systems architecture group, said in a prerecorded briefing.

"Security is only as good as the layer below it," he said. "You can have the most secure application in the world, but if the operating system or hypervisor that that application is running on is compromised, it can spoof that application into thinking that everything is OK."

The data security features could enable research collaboration and analysis using sensitive data, the company said. In healthcare, for example, brain-scan data from several hospitals could be used to train a machine learning model in a secure way that abides by healthcare privacy regulations. So-called "multiparty learning" requires a federated model to protect sensitive data, and encryption is at the heart of that technology.

Intel SGX is already supported by a number of software partners, including Microsoft, allowing developers to quickly gain the benefits for their applications, says Intel's Perez.

"One very interesting thing about SGX is that it provides these fine-grained capabilities, so a developer can protect the most sensitive code and data," he says. "We allow them to take existing applications and, simply by recompiling, can run inside of one of these SGX secure enclaves."

Veteran technology journalist of more than 20 years. Former research engineer. Written for more than two dozen publications, including CNET News.com, Dark Reading, MIT's Technology Review, Popular Science, and Wired News. Five awards for journalism, including Best Deadline ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Threaded  |  Newest First  |  Oldest First
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/23/2020
Modern Day Insider Threat: Network Bugs That Are Stealing Your Data
David Pearson, Principal Threat Researcher,  10/21/2020
Are You One COVID-19 Test Away From a Cybersecurity Disaster?
Alan Brill, Senior Managing Director, Cyber Risk Practice, Kroll,  10/21/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-21269
PUBLISHED: 2020-10-27
checkpath in OpenRC through 0.42.1 might allow local users to take ownership of arbitrary files because a non-terminal path component can be a symlink.
CVE-2020-27743
PUBLISHED: 2020-10-26
libtac in pam_tacplus through 1.5.1 lacks a check for a failure of RAND_bytes()/RAND_pseudo_bytes(). This could lead to use of a non-random/predictable session_id.
CVE-2020-1915
PUBLISHED: 2020-10-26
An out-of-bounds read in the JavaScript Interpreter in Facebook Hermes prior to commit 8cb935cd3b2321c46aa6b7ed8454d95c75a7fca0 allows attackers to cause a denial of service attack or possible further memory corruption via crafted JavaScript. Note that this is only exploitable if the application usi...
CVE-2020-26878
PUBLISHED: 2020-10-26
Ruckus through 1.5.1.0.21 is affected by remote command injection. An authenticated user can submit a query to the API (/service/v1/createUser endpoint), injecting arbitrary commands that will be executed as root user via web.py.
CVE-2020-26879
PUBLISHED: 2020-10-26
Ruckus vRioT through 1.5.1.0.21 has an API backdoor that is hardcoded into validate_token.py. An unauthenticated attacker can interact with the service API by using a backdoor value as the Authorization header.