Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Cloud

4/22/2020
05:40 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
100%
0%

IBM Cloud Data Shield Brings Confidential Computing to Public Cloud

The Cloud Data Shield relies on confidential computing, which protects data while it's in use by enterprise applications.

IBM today announced the general availability of IBM Cloud Data Shield, a service built to better protect business applications while information is at rest, in transit, and in use. The platform, developed in a partnership with Fortanix, relies on confidential computing, a technology gaining traction as more organizations seek new ways to secure their sensitive data in the cloud.

Cloud Data Shield, which went into beta in late February, contains Fortanix's Runtime Encryption platform and Intel Software Guard Extensions technology. The combination enables "confidential computing," a term used to describe the protection of data in use by performing processes in a hardware-based trusted execution environment (TEE). A TEE ensures that only authorized code can execute in an environment and that external forces can't tamper with it. 

Modern approaches to cloud security address data at rest, when it's on a hard drive or in a storage system, and in transit, when it's moving between locations. Few secure data when it's in use by an application and exposed in memory. Data must be decrypted for an application to use it, making it possible for criminals or insiders to access the data while an application runs.

"A user with privileged access can take a memory dump at run time and could still access the sensitive information stored in memory," says Nataraj Nagaratnam, CTO and director of cloud security for IBM Cloud and Cognitive Software. In-memory encryption, another term for confidential computing, encrypts data in use to eliminate the possibility of exposure.

Cloud Data Shield lets users run containerized applications in a secure enclave on an IBM Cloud Kubernetes Service host. The service supports user-level code to allocate enclaves, which are protected from processes running at higher levels of privilege. IBM offers TEE-based secure enclaves in Bare Metal servers and in Kubernetes Nodes in all cloud data centers, and it teamed with Fortanix so clients could use TEE without learning the ins and outs of secure enclaves. 

"You don't have to understand how enclaves work," explains Fortanix CEO Ambuj Kumar. Cloud Data Shield runs containerized applications on IBM Cloud Kubernetes or Red Hat OpenShift, both in a secure enclave running on Intel SGX hardware. Customers can use their own custom application without modifying it to access all features of the service. When the container is converted, users can access a dashboard to see how the application is running.

"You get the visibility, and your software is now running securely without you having to configure or recompile your container," Kumar says. Application writers don't have to worry about changing anything. There is an option to use the open source Enclave Development Platform (EPD) to write native applications for confidential computing environments, IBM says.

During the year-long beta period, Nagaratnam says his team learned about clients' requirements to run different languages; as a result, they expanded the language capabilities: Fortanix's run time encryption OS lets containerized applications run in the secure enclaves with no code change, and it supports languages including C, C++, Python, and Java. They also learned the utility of having some curated applications, like NGINX, Vault, and MySQL, run on the TEE.

Confidential Computing: What It Is, Why It's Growing
Confidential computing is not new; however, it is becoming more broadly known and discussed as businesses look for new ways to protect sensitive data from this kind of threat. In August 2019 the Linux Foundation announced plans to form the Confidential Computing Consortium (CCC), a nonprofit made up of hardware vendors, cloud providers, developers, open source pros, and academics focused on defining and driving adoption of confidential computing. 

"It's always been a niche thing that's been hard to go mainstream, and it's really pretty new," says Jim Reavis, co-founder and CEO of the Cloud Security Alliance. This has begun to shift. The current attitude toward confidential computing mirrors the early attitudes toward the cloud.

"Twelve years ago, we saw interest in 'kicking the tires' on cloud, in general, to see if it was something that would be valid for highly sensitive information where you don't want any sort of a window of it decrypted," Reavis continues. Now, with confidential computing, businesses are trying to understand the types of attacks that require it and costs of application migration.

A few scenarios would require the security that confidential computing promises. Reavis points to insider attacks inside a cloud provider, where a business doesn't trust the infrastructure provided. While some attacks could resemble this, he says, providers are usually pretty secure.

There is a bigger interest in confidential computing from a compliance and risk management perspective, he continues. Organizations are worried about scenarios in which a cloud provider is in a foreign country, or has relations with a country, and the government requests access to data. They want to assure themselves they have decoupled provider access and root of trust, and know that the information is isolated in the secure enclave.

The interest is stronger in the military, central banks, and financial services organizations where "they do worry about disruptions to the supply chain or memory attacks that are very sophisticated," Reavis says. These days, there are actors who could pull those attacks off.

Questions remain about how comfortable businesses are with the secure enclave tech, which is a more secure architecture but still relatively young. Still, confidential computing is based on principles of isolation, sandboxing, and trusted platform modules that have been around for a long time. Sophisticated businesses are investing in this technology and starting to pilot applications.

"They definitely see this as a very solid concept," Reavis notes.

Related Content:

A listing of free products and services compiled for Dark Reading by Omdia analysts to help meet the challenges of COVID-19. 

Check out The Edge, Dark Reading's new section for features, threat data, and in-depth perspectives. Today's featured story: "Learning From the Honeypot: A Researcher and a Duplicitous Docker Image"

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio
 

Recommended Reading:

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
COVID-19: Latest Security News & Commentary
Dark Reading Staff 10/1/2020
9 Tips to Prepare for the Future of Cloud & Network Security
Kelly Sheridan, Staff Editor, Dark Reading,  9/28/2020
Attacker Dwell Time: Ransomware's Most Important Metric
Ricardo Villadiego, Founder and CEO of Lumu,  9/30/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Special Report: Computing's New Normal
This special report examines how IT security organizations have adapted to the "new normal" of computing and what the long-term effects will be. Read it and get a unique set of perspectives on issues ranging from new threats & vulnerabilities as a result of remote working to how enterprise security strategy will be affected long term.
Flash Poll
How IT Security Organizations are Attacking the Cybersecurity Problem
How IT Security Organizations are Attacking the Cybersecurity Problem
The COVID-19 pandemic turned the world -- and enterprise computing -- on end. Here's a look at how cybersecurity teams are retrenching their defense strategies, rebuilding their teams, and selecting new technologies to stop the oncoming rise of online attacks.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-19393
PUBLISHED: 2020-10-01
The Web application on Rittal CMC PU III 7030.000 V3.00 V3.11.00_2 to V3.15.70_4 devices fails to sanitize user input on the system configurations page. This allows an attacker to backdoor the device with HTML and browser-interpreted content (such as JavaScript or other client-side scripts) as the c...
CVE-2020-16844
PUBLISHED: 2020-10-01
In Istio 1.5.0 though 1.5.8 and Istio 1.6.0 through 1.6.7, when users specify an AuthorizationPolicy resource with DENY actions using wildcard suffixes (e.g. *-some-suffix) for source principals or namespace fields, callers will never be denied access, bypassing the intended policy.
CVE-2020-24620
PUBLISHED: 2020-10-01
Unisys Stealth(core) before 4.0.132 stores Passwords in a Recoverable Format.
CVE-2020-25017
PUBLISHED: 2020-10-01
Envoy through 1.15.0 only considers the first value when multiple header values are present for some HTTP headers. Envoy’s setCopy() header map API does not replace all existing occurences of a non-inline header.
CVE-2020-25018
PUBLISHED: 2020-10-01
Envoy master between 2d69e30 and 3b5acb2 may fail to parse request URL that requires host canonicalization.