Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

10/31/2018
02:30 PM
Rodney Joffe
Rodney Joffe
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

How the Power of Quantum Can Be Used Against Us

There has been a palpable shift from volumetric attacks to "quantum attacks," and they look to be one of the biggest cybersecurity challenges on the rise today.

Quantum computing has the ability to shape our global information technology. Every day, enterprises are edging closer to harnessing the true power of quantum computing. Now that the technology is moving from research to practice, governments are getting involved too. In late September, the Department of Energy announced $218 million in funding for 85 quantum projects, while the National Science Foundation awarded $31 million for quantum research. Even with these developments, there is not yet a fully functioning quantum computer that can perform all standard computing tasks.

The processing power of quantum computers will fundamentally change the way we approach things. This new approach to processing data may one day lead to revolutionary breakthroughs within and across nations, and industries, solving problems we might not even consider problems today.

However, with any major technology innovation, quantum introduces risks to our current IT infrastructure. For example, quantum can render encryption useless. With encryption ineffective, sensitive data from financial institutions or governments could be made easily accessible. While these threats are not imminent, because quantum computers are still in the making, entire industries need to prepare for what the National Institute of Standards and Technology (NIST) calls the "era of post-quantum cryptography."

The Current Threat
There has been a palpable shift from volumetric attacks to "quantum attacks," and they are looking to be one of the biggest cybersecurity challenges on the rise today. The cybercriminals behind quantum attacks may start off small, but the attacks can quickly become highly complex by adding attack vectors, botnets, and ports.

Current quantum attacks are relatively small. An anomaly of 300 Mbps may probably not even be noticed by a company that is running hundreds of applications in the cloud, and such an attack won't trigger cloud failover. Attackers are familiar with this open window and they try to bypass security endpoints to avoid triggering cloud failover mitigation. These stronger attacks require quantum resources that have not been developed yet, which buys organizations some time. However, the faster quantum computing develops, the more complex attacks will become — and the challenges for companies working to defend against them increases as well. Consequently, it is important for security teams to update and develop a quantum security strategy.

The Future of the Enterprise
In order to understand how cybercriminals can utilize quantum technology to gain sensitive data, let's look at an example in "What Is Quantum Computing?" by the Information Technology & Innovation Foundation. Imagine a phonebook with 10 million entries. A standard search algorithm would have to try an average of 5 million times to find the entry it is looking for. A quantum computer only needs 1,000 operations — and hence is 5,000 times faster.

We don't know when the first major company or country will announce a fully functioning quantum computer, but we know it's not some farfetched fantasy. A quantum computer in the hands of a malicious attacker will be able to decrypt sensitive data currently protected by corporations and governments. So, despite all the current issues security teams are working on every day, it's not too soon to start planning for the post-quantum computing world.

Getting Quantum on Your Radar
To start, IT security professionals should begin monitoring quantum computing updates, trends, attacks, international quantum security standards, and protocols. Next, IT leaders should work together with experienced and reputable partners to help optimize organizations' IT environments and protect their data. NIST and others in the security industry have started to conduct research about quantum-safe cryptographies for classical computers that are capable of resisting quantum attacks. In addition, make sure your services and systems are continuously and fully updated. Only allow services to operate within your organization that are required, and don't leave unneeded services running — they could be a window for quantum attacks if not properly maintained.

It is time for governments and organizations to face the very real threats that come with the introduction of a revolutionary new technology like quantum computing. This isn't an easy problem to solve. Global IT experts will need to invent an entirely new approach to information security, and it will not happen overnight. But acknowledging that these threats are looming is the first step. Then comes action.

Related Content:

 

Black Hat Europe returns to London Dec. 3-6, 2018, with hands-on technical Trainings, cutting-edge Briefings, Arsenal open-source tool demonstrations, top-tier security solutions, and service providers in the Business Hall. Click for information on the conference and to register.

Rodney Joffe has been a sought-after cybersecurity expert who, among other notable accomplishments, leads the Conficker Working Group to protect the world from the Conficker worm. Providing guidance and knowledge to organizations from the United States government to the ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
US Mayors Commit to Just Saying No to Ransomware
Robert Lemos, Contributing Writer,  7/16/2019
A Lawyer's Guide to Cyber Insurance: 4 Basic Tips
Beth Burgin Waller, Chair, Cybersecurity & Data Privacy Practice , Woods Rogers PLC,  7/12/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Building and Managing an IT Security Operations Program
As cyber threats grow, many organizations are building security operations centers (SOCs) to improve their defenses. In this Tech Digest you will learn tips on how to get the most out of a SOC in your organization - and what to do if you can't afford to build one.
Flash Poll
The State of IT Operations and Cybersecurity Operations
The State of IT Operations and Cybersecurity Operations
Your enterprise's cyber risk may depend upon the relationship between the IT team and the security team. Heres some insight on what's working and what isn't in the data center.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-13951
PUBLISHED: 2019-07-18
The set_ipv4() function in zscan_rfc1035.rl in gdnsd 3.2.0 has a stack-based buffer overflow via a long and malformed IPv4 address in zone data.
CVE-2019-13952
PUBLISHED: 2019-07-18
The set_ipv6() function in zscan_rfc1035.rl in gdnsd 3.2.0 has a stack-based buffer overflow via a long and malformed IPv6 address in zone data.
CVE-2019-10100
PUBLISHED: 2019-07-18
The Sleuth Kit 4.6.0 and earlier is affected by: Integer Overflow. The impact is: Opening crafted disk image triggers crash in tsk/fs/hfs_dent.c:237. The component is: Overflow in fls tool used on HFS image. Bug is in tsk/fs/hfs.c file in function hfs_cat_traverse() in lines: 952, 1062. The attack v...
CVE-2019-10102
PUBLISHED: 2019-07-18
SaltStack Salt 2018.3, 2019.2 is affected by: SQL Injection. The impact is: An attacker could escalate privileges on MySQL server deployed by cloud provider. It leads to RCE. The component is: The mysql.user_chpass function from the MySQL module for Salt (https://github.com/saltstack/salt/blob/devel...
CVE-2019-10102
PUBLISHED: 2019-07-18
Gitea 1.7.0 and earlier is affected by: Cross Site Scripting (XSS). The impact is: Attacker is able to have victim execute arbitrary JS in browser. The component is: go-get URL generation - PR to fix: https://github.com/go-gitea/gitea/pull/5905. The attack vector is: victim must open a specifically ...