Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

9/9/2019
09:00 AM
By Nadav Maman, Co-Founder & Chief Technical Officer at Deep Instinct
By Nadav Maman, Co-Founder & Chief Technical Officer at Deep Instinct
Sponsored Article
50%
50%

Hackers & Artificial Intelligence: A Dynamic Duo

To best defend against an AI attack, security teams will need to adopt the mindset and techniques of a malicious actor.

The amplified efficiency of artificial intelligence (AI) means that once a system is trained and deployed, malicious AI can attack a far greater number of devices and networks more quickly and cheaply than a malevolent human actor. Given sufficient computing power, an AI system could launch many attacks, be more selective in its targets and more devastating in its impact. The potential mass destruction makes a nuclear explosion sound rather limited.

Currently the use of AI for attackers is mainly pursued at an academic level and we’re yet to see AI attacks in the wild. However, there’s a lot of talk in the industry about attackers using AI in their malicious efforts, and defenders using machine learning as a defense technology.

There are three types of attacks in which an attacker can use AI:

AI-based cyberattacks: The malware operates AI algorithms as an integral part of its business logic. This is where AI algorithms are used to detect anomalies and indicate irregular user and system activity patterns. The AI algorithm is trained to identify unusual patterns indicative of malicious activity that can be used to execute malware, increase or decrease evasion and stealth configurations and communication times. An example of this is DeepLocker, demonstrated by IBM security which encrypted ransomware to autonomously decide which computer to attack based on a face recognition algorithm.

AI facilitated cyberattacks: The malicious code and malware running on the victim’s machine does not include AI algorithms, but the AI is used elsewhere in the attacker’s environment. An example of this is Info-stealer malware which uploads a lot of personal information to the C&C server, which then runs an NLP algorithm to cluster and classify sensitive information as interesting (e.g. credit card numbers). Another example of this is spear fishing where an email is sent with a façade the looks legitimate by collecting and using information specifically relevant to the target. 

Adversarial attacks: The use of malicious AI algorithms to subvert the functionality of benign AI algorithms. This is done by using the algorithms and techniques that are built into a traditional machine learning algorithm and “breaking” it by reverse engineering the algorithm. Skylight Cyber recently demonstrated an example of this when they were able to trick Cylance’s AI based antivirus product into detecting a malicious file as benign.

The constructive AI versus malicious AI trend will continue to increase and spread across the opaque border that separates academic proof of concepts from actual full-scale attacks in the wild. This will happen incrementally as computing power (GPUs) and deep learning algorithms become more and more available to the wider public.

To best defend against an AI attack, you need to adopt the mindset and techniques of a malicious actor. Machine learning and deep learning experts need to be familiar with these techniques in order to build robust systems that will defend against them. 

For more examples of how each of the AI types of attack have been discovered, click here to read the full article.

About the Author

Nadav Maman, Co-Founder & Chief Technical Officer, Deep Instinct

Nadav Maman brings 15 years of experience in customer-driven business and technical leadership to his role as co-founder and chief technical officer at Deep Instinct. He has a proven track record in managing technical complex cyber projects, including design, executions and sales. He also has vast hands-on experience with data security, network design, and implementation of complex heterogeneous environments.

 

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
How Attackers Could Use Azure Apps to Sneak into Microsoft 365
Kelly Sheridan, Staff Editor, Dark Reading,  3/24/2020
Malicious USB Drive Hides Behind Gift Card Lure
Dark Reading Staff 3/27/2020
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
6 Emerging Cyber Threats That Enterprises Face in 2020
This Tech Digest gives an in-depth look at six emerging cyber threats that enterprises could face in 2020. Download your copy today!
Flash Poll
State of Cybersecurity Incident Response
State of Cybersecurity Incident Response
Data breaches and regulations have forced organizations to pay closer attention to the security incident response function. However, security leaders may be overestimating their ability to detect and respond to security incidents. Read this report to find out more.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-10940
PUBLISHED: 2020-03-27
Local Privilege Escalation can occur in PHOENIX CONTACT PORTICO SERVER through 3.0.7 when installed to run as a service.
CVE-2020-10939
PUBLISHED: 2020-03-27
Insecure, default path permissions in PHOENIX CONTACT PC WORX SRT through 1.14 allow for local privilege escalation.
CVE-2020-6095
PUBLISHED: 2020-03-27
An exploitable denial of service vulnerability exists in the GstRTSPAuth functionality of GStreamer/gst-rtsp-server 1.14.5. A specially crafted RTSP setup request can cause a null pointer deference resulting in denial-of-service. An attacker can send a malicious packet to trigger this vulnerability.
CVE-2020-10817
PUBLISHED: 2020-03-27
The custom-searchable-data-entry-system (aka Custom Searchable Data Entry System) plugin through 1.7.1 for WordPress allows SQL Injection. NOTE: this product is discontinued.
CVE-2020-10952
PUBLISHED: 2020-03-27
GitLab EE/CE 8.11 through 12.9.1 allows blocked users to pull/push docker images.