Attacks/Breaches

5/16/2018
05:40 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
100%
0%

Frequency & Costs of DNS-Based Attacks Soar

The average cost of a DNS attack in the US has climbed 57% over the last year to $654,000 in 2018, a survey from EfficientIP shows.

The frequency of Domain Name System (DNS) attacks and the costs associated with addressing them are both increasing sharply, a new survey by EfficientIP shows.

The DNS management vendor recently had research firm Coleman Parkes poll about 1,000 IT managers in North America, Asia, and Europe on the causes and responses to DNS-based threats.

The results showed that the global average costs of DNS attacks have surged 57% over 2017 to $715,000 in 2018. In the past 12 months, organizations faced an average of seven DNS attacks. Some of the victims ended up paying more than $5 million in associated costs. One in five (22%) organizations suffered business losses to DNS attacks.

The costs per DNS attack associated with remediation, recovery, and business disruption tended to vary by region. In North America, organizations in the US had the highest average costs, at around $654,000. Companies in the region also experienced the steepest year-over-year increase in costs at 82%. Overall, though, organizations in France had higher costs associated with DNS attacks than anywhere else, with victims spending an average of $974,000 on one.

"DNS attacks cost so much because consequences are instantaneous, broad, and very difficult to mitigate without the appropriate technology," says Ronan David, senior vice president of strategy for EfficientIP. "In modern networks, DNS is routing access to almost all applications."

Contributing to the high attack costs and overall complexity is the fact that DNS is both an attack vector and a target, he says. Attackers can use the DNS infrastructure as a vector for stealing data, for communicating with command and control servers, for setting up malicious phishing and spam domains, and for enabling other kinds of malicious activity. Other attacks, though, are targeted at disrupting DNS services directly, such as DNS distributed denial-of-service (DDoS) attacks.

DDoS attacks against DNS infrastructure in particular can be very costly to remediate, chiefly because such attacks are asymmetric, says Cricket Liu, chief DNS architect at Infoblox. "An attacker just needs to hire a botnet for a few hours to launch the attack, but the organization targeted needs to build excess capacity and maintain it year-round," in addition to possibly using a DDoS mitigation service, Liu says.

The five most common DNS-based attacks in EfficientIP's survey included those in which DNS is used as an attack vector and those in which an organization's DNS infrastructure is the target. Topping the list for 2018 is DNS-based malware followed by phishing, DNS tunneling, domain lock-up, and DNS-based DDoS attacks.

"With 33% of people having suffered data theft, DNS is certainly one of the most powerful attack vectors," says EfficientIP's David from. At the same time, the survey also showed that 40% of cloud-based application downtime is caused by attacks aimed at DNS servers and service.

Hackers are developing sophisticated new multivector, multistage, and distributed DNS attacks. The exponential rise of connected devices, Web-based applications, and interconnected networks is giving them a broader surface to attack as well, David says. "DNS is, therefore, a primary vector and target leading to higher damage costs."

Merike Kaeo, CTO at Farsight Security, says DNS is a more fundamental and complex protocol than most people realize. "It is critical to not only name and address resolution but can also be utilized to define email servers associated with a domain name, identify service locations, specify type of OS or CPU on a host, and other Internet-related activities."

As attacks against DNS increase and become more sophisticated, it's no surprise that remediation costs are increasing as well, Kaeo says. What surveys like those by EfficientIP show is that organizations need to start paying attention to their DNS infrastructure, she says.

"Know which domains you use and what can potentially be abused," Kaeo notes. Pay attention to the security practices of registries and registrars and implement controls for determining changes in DNS traffic patterns and for blocking unknown domains, she says.

Review your existing mechanisms for dealing with DNS threats as well, says David. Most are simply workarounds that are not designed specifically for dealing with DNS threats. As an example, he points to data exfiltration attacks via DNS. The appropriate detection capacity requires real-time and context-aware DNS traffic analysis for behavioral threat detection, he says.

"DNS is by design an open service on the network which is not correctly monitored, and for which a traditional security solution cannot protect efficiently," he notes. "DNS is mission-critical. When it goes down, the business is down."

Related Content:

Jai Vijayan is a seasoned technology reporter with over 20 years of experience in IT trade journalism. He was most recently a Senior Editor at Computerworld, where he covered information security and data privacy issues for the publication. Over the course of his 20-year ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Election Websites, Back-End Systems Most at Risk of Cyberattack in Midterms
Kelly Jackson Higgins, Executive Editor at Dark Reading,  8/14/2018
Intel Reveals New Spectre-Like Vulnerability
Curtis Franklin Jr., Senior Editor at Dark Reading,  8/15/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-13435
PUBLISHED: 2018-08-16
** DISPUTED ** An issue was discovered in the LINE jp.naver.line application 8.8.0 for iOS. The Passcode feature allows authentication bypass via runtime manipulation that forces a certain method to disable passcode authentication. NOTE: the vendor indicates that this is not an attack of interest w...
CVE-2018-13446
PUBLISHED: 2018-08-16
** DISPUTED ** An issue was discovered in the LINE jp.naver.line application 8.8.1 for Android. The Passcode feature allows authentication bypass via runtime manipulation that forces a certain method's return value to true. In other words, an attacker could authenticate with an arbitrary passcode. ...
CVE-2018-14567
PUBLISHED: 2018-08-16
libxml2 2.9.8, if --with-lzma is used, allows remote attackers to cause a denial of service (infinite loop) via a crafted XML file that triggers LZMA_MEMLIMIT_ERROR, as demonstrated by xmllint, a different vulnerability than CVE-2015-8035 and CVE-2018-9251.
CVE-2018-15122
PUBLISHED: 2018-08-16
An issue found in Progress Telerik JustAssembly through 2018.1.323.2 and JustDecompile through 2018.2.605.0 makes it possible to execute code by decompiling a compiled .NET object (such as DLL or EXE) with an embedded resource file by clicking on the resource.
CVE-2018-11509
PUBLISHED: 2018-08-16
ASUSTOR ADM 3.1.0.RFQ3 uses the same default root:admin username and password as it does for the NAS itself for applications that are installed from the online repository. This may allow an attacker to login and upload a webshell.