Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

1/27/2014
07:56 PM
Connect Directly
Twitter
RSS
E-Mail
50%
50%

Air Force Researchers Plant Rootkit In A PLC

Rogue code and malicious activity could go undetected in many of today's programmable logic controllers

Researchers with the U.S. Air Force Institute of Technology (AFIT) have created a prototype rootkit that can sit undetected in the firmware of a programmable logic controller (PLC) device and corrupt utility and plant floor operations.

PLCs -- which run various industrial processes, from spinning centrifuges of uranium to operating amusement park rides -- traditionally have not been built with security in mind, and little, if any, technology exists to track or detect rogue code running in them.

"We wanted to demonstrate the feasibility" of malicious firmware in a PLC, says Jonathan Butts, research director for AFIT's Center for Cyberspace Research. Butts and AFIT research assistant Stephen Dunlap presented their rootkit research earlier this month at the S4x14 ICS/SCADA conference in Miami.

The researchers were able to modify the firmware for rootkits in various PLCs, but only went public with details on the Allen Bradley 1756-L61 (ControlLogix family) PLC. The Rockwell Automation firm is the only PLC vendor thus far that responded to the research with a fix: in this case, digital signature technology for the PLC to thwart rootkit infections.

Among AFIT's goals was to provide sample malware that could be used against these critical ICS/SCADA devices to further test for these types of threats and attacks. A PLC could be infected with the rootkit via a malicious firmware update, for example, or via a rigged or infected USB stick on a laptop connected to a PLC in a substation, the researchers say.

"We didn't find bugs. There were no bugs you could exploit: We just used methods to code the system up where you take advantage of and embed your own malicious software to run on top of the firmware," Butts says. An attacker could then allow the PLC to operate normally, or to do its bidding via "trigger" functions, he says.

The AFIT researchers created two payloads for the PLC rootkit that could be triggered with a time bomb in the firmware, for example, as well as with remote commands. One payload was a "soft" denial-of-service (DoS), where the attacker compromises the PLC's operations, but it can be reset to its normal state. "A fault happens, [the operators] reset the PLC, and the [attacker]" disrupts the PLC again, but in such a way that the operator is unable to diagnose that it was done maliciously, according to Dunlap. A persistent DoS "turns the PLC into a brick, and you aren't able to operate it without the manufacturer replacing it," for example, he says.

The rootkit didn't require major resources to develop, either: It took an AFIT graduate student less than four months to reverse-engineer a PLC and write the prototype rootkit, and cost about $2,000 overall to develop.

The logic bomb trigger created by the Air Force researchers impressed Dale Peterson, founder and CEO of Digital Bond, an ICS/SCADA consultancy that hosts the S4 Conference. "The tying of the logic bomb to moving the switch from 'run' to 'program' mode was very slick. The technician or engineer is likely to think the failure was due to the new PLC code he was trying to load into the PLC was the problem, at least for a while," Peterson says.

PLCs are at risk of attack because there are no tools to detect malicious code running on them today, the researchers say. "What's lacking in the security field is the capability to analyze the device that has failed," Dunlap told S4 attendees.

Vendors can help prevent PLC rootkits by adding digital signatures and trusted computing module (TPM) to their PLC products, as well as secure coding practices, the AFIT researchers say. ICS/SCADA operators can tighten up their configuration management and add deep packet inspection and situational awareness to their security arsenal.

"The final part of this three-legged stool are the integrators. They are the often forgotten part of ICS," Butts says. "They have the configuration for most of these devices for their customers" and should ensure the source of software and updates before installing the systems, he says.

A PLC attack could be perpetrated via a corrupted supply chain or a contractor. "Electric substations at some point in time get serviced by legitimate authorized people, engineers, and guess what? They are using mobile computers to service it," says Ralph Langner, founder of Langner Communications. "We are talking about small companies who are in charge of these tasks that most of the time don't have any clue of cybersecurity. So [an attacker targeting a site] could spearphish some of those employees in those companies" to get to the ultimate target, he says.

Butts says the good news is now there are test cases of firmware rootkits. "We have a test bank for malicious rootkits to test mitigation efforts," Butts says.

PLCs were also the target of abuse by another researcher at S4, Digital Bond's Stephen Hilt, who rigged a PLC with a low-cost hacking tool that can shut down a process control network with a text message. The so-called PLCpwn tool uses existing Metasploit attack modules that previously had been created by Digital Bond.

[A researcher has rigged a programmable logic controller (PLC) with a low-cost hacking tool that can shut down a process control network with a text message. See The PLC As An ICS/SCADA Hacking Tool .]

Have a comment on this story? Please click "Add Your Comment" below. If you'd like to contact Dark Reading's editors directly, send us a message.

Kelly Jackson Higgins is the Executive Editor of Dark Reading. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
Commentary
How SolarWinds Busted Up Our Assumptions About Code Signing
Dr. Jethro Beekman, Technical Director,  3/3/2021
News
'ObliqueRAT' Now Hides Behind Images on Compromised Websites
Jai Vijayan, Contributing Writer,  3/2/2021
News
Attackers Turn Struggling Software Projects Into Trojan Horses
Robert Lemos, Contributing Writer,  2/26/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-5148
PUBLISHED: 2021-03-05
SonicWall SSO-agent default configuration uses NetAPI to probe the associated IP's in the network, this client probing method allows a potential attacker to capture the password hash of the privileged user and potentially forces the SSO Agent to authenticate allowing an attacker to bypass firewall a...
CVE-2020-36255
PUBLISHED: 2021-03-05
An issue was discovered in IdentityModel (aka ScottBrady.IdentityModel) before 1.3.0. The Branca implementation allows an attacker to modify and forge authentication tokens.
CVE-2019-18351
PUBLISHED: 2021-03-05
An issue was discovered in channels/chan_sip.c in Sangoma Asterisk through 13.29.1, through 16.6.1, and through 17.0.0; and Certified Asterisk through 13.21-cert4. A SIP request can be sent to Asterisk that can change a SIP peer's IP address. A REGISTER does not need to occur, and calls can be hijac...
CVE-2021-27963
PUBLISHED: 2021-03-05
SonLogger before 6.4.1 is affected by user creation with any user permissions profile (e.g., SuperAdmin). An anonymous user can send a POST request to /User/saveUser without any authentication or session header.
CVE-2021-27964
PUBLISHED: 2021-03-05
SonLogger before 6.4.1 is affected by Unauthenticated Arbitrary File Upload. An attacker can send a POST request to /Config/SaveUploadedHotspotLogoFile without any authentication or session header. There is no check for the file extension or content of the uploaded file.