Attacks/Breaches

9/28/2018
04:14 PM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
50%
50%

'Torii' Breaks New Ground For IoT Malware

Stealth, persistence mechanism and ability to infect a wide swath of devices make malware dangerous and very different from the usual Mirai knockoffs, Avast says.

A dangerous and potentially destructive new IoT malware sample has recently surfaced that for the first time this year is not just another cheap Mirai knockoff.

Researchers from security vendor Avast recently analyzed the malware and have named it Torii because the telnet attacks through which it is being propagated have been coming from Tor exit nodes.

Besides bearing little resemblance to Mirai in code, Torii is also stealthier and more persistent on compromised devices. It is designed to infect what Avast says is one of the largest sets of devices and architectures for an IoT malware strain. Devices on which Torii works include those based on x86, x64, PowerPC, MIPS, ARM, and several other architectures.

Interestingly, so far at least Torii is not being used to assemble DDoS botnets like Mirai was, or to drop cryptomining tools like some more recent variants have been doing. Instead it appears optimized for stealing data from IoT devices. And, like a slew of other recent malware, Torii has a modular design, meaning it is capable of relatively easily fetching and executing other commands.

Martin Hron, a security researcher at Avast says, if anything, Torii is more like the destructive VPNFilter malware that infected some 500,000 network attached storage devices and home-office routers this May. VPNFilter attacked network products from at least 12 major vendors and was capable of attacking not just routers and network attached storage devices but the systems behind them as well.

Torii is different from other IoT malware on several other fronts. For one thing, "it uses six or more ways to achieve persistence ensuring it doesn’t get kicked out of the device easily on a reboot or by another piece of malware," Hron notes.

Torii's modular, multistage architecture is different too. "It drops a payload to connect with [command-and-control (CnC)] and then lays in wait to receive commands or files from the CnC," the security researcher says. The command-and-control server with which the observed samples of Torii have been communicating is located in Arizona.

Torii's support for a large number of common architectures gives it the ability to infect anything with open telnet, which includes millions of IoT devices. Worryingly, it is likely the malware authors have other attack vectors as well, but telnet is the only vector that has been used so far, Hron notes.

While Torii hasn't been used for DDoS attacks yet, it has been sending a lot of information back to its command-and-control server about the devices it has infected. The data being exfiltrated includes Hostname, Process ID, and other machine-specific information that would let the malware operator fingerprint and catalog devices more easily. Hron says Avast researchers aren't really sure why Torii is collecting all the data.

Significantly, Avast researchers discovered a hitherto unused binary on the server that is distributing the malware, which could let the attackers execute any command on an infected device. The app is written in GO, which means it can be easily recompiled to run on virtually any machine.

Hron says Avast is unsure what the malware authors plan to do with the functionality. But based on its versatility and presence on the malware distribution server, he thinks it could be a backdoor or a service that would let the attacker orchestrate multiple devices at once.

The log data that Avast was able to analyze showed that slightly less than 600 unique client devices had downloaded Torii. But it is likely that the number is just a snapshot of new machines that were recruited into the botnet for the period for which Avast has the log files, the security vendor said.

Related Content:

 

Black Hat Europe returns to London Dec 3-6 2018  with hands-on technical Trainings, cutting-edge Briefings, Arsenal open-source tool demonstrations, top-tier security solutions and service providers in the Business Hall. Click for information on the conference and to register.

Jai Vijayan is a seasoned technology reporter with over 20 years of experience in IT trade journalism. He was most recently a Senior Editor at Computerworld, where he covered information security and data privacy issues for the publication. Over the course of his 20-year ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
When Your Sandbox Fails
Kowsik Guruswamy, Chief Technology Officer at Menlo Security,  4/11/2019
Julian Assange Arrested in London
Dark Reading Staff 4/11/2019
8 'SOC-as-a-Service' Offerings
Steve Zurier, Freelance Writer,  4/12/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-1840
PUBLISHED: 2019-04-18
A vulnerability in the DHCPv6 input packet processor of Cisco Prime Network Registrar could allow an unauthenticated, remote attacker to restart the server and cause a denial of service (DoS) condition on the affected system. The vulnerability is due to incomplete user-supplied input validation when...
CVE-2019-1841
PUBLISHED: 2019-04-18
A vulnerability in the Software Image Management feature of Cisco DNA Center could allow an authenticated, remote attacker to access to internal services without additional authentication. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vuln...
CVE-2019-1826
PUBLISHED: 2019-04-18
A vulnerability in the quality of service (QoS) feature of Cisco Aironet Series Access Points (APs) could allow an authenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper input validation on QoS fields within Wi-Fi fra...
CVE-2019-1829
PUBLISHED: 2019-04-18
A vulnerability in the CLI of Cisco Aironet Series Access Points (APs) could allow an authenticated, local attacker to gain access to the underlying Linux operating system (OS) without the proper authentication. The attacker would need valid administrator device credentials. The vulnerability is due...
CVE-2019-1830
PUBLISHED: 2019-04-18
A vulnerability in Locally Significant Certificate (LSC) management for the Cisco Wireless LAN Controller (WLC) could allow an authenticated, remote attacker to cause the device to unexpectedly restart, which causes a denial of service (DoS) condition. The attacker would need to have valid administr...