Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

8/30/2013
06:52 PM
Ehsan Foroughi
Ehsan Foroughi
Commentary
50%
50%

Thwart DNS Hijackers: 5 Tips

Domain name system attacks hit The New York Times and Twitter hard last month. Here are five ways to make your DNS records harder to hack and easier to recover if they're compromised.

The Syrian Electronic Army: 9 Things We Know
(click image for larger view)
The Syrian Electronic Army: 9 Things We Know
In light of the recent domain name system (DNS) hijacking attacks on The New York Times, Twitter and Huffington Post, it's important for CIOs to take a closer look at their DNS security strategy -- and to be able to respond quickly if their company is attacked.

DNS records are basically sets of instructions that help connect your website to the outside world. The following five practices make these records harder to hijack and easier to recover if they are compromised, thereby reducing the damage attackers can cause. When DNS records are hijacked, a company must be able to get them back as quickly as possible because once the malicious records hit the caching servers, it becomes much harder to undo the damage.

1. Use best practices for credentials that allow changes to be made to DNS records.

Your whole service is only as secure as the security of the password to your DNS registrant account. Ensure that access to accounts used to update DNS records is limited to as few people in your organization as possible. Make sure to use hard-to-guess passwords, and avoid reusing passwords at all costs.

[ Here's why you shouldn't buy Android apps from off-brand sites. Read Hack 99% Of Android Devices: Big Vulnerability. ]

2. Revisit the choice of DNS provider regularly as you grow.

Many companies, particularly start-ups, frequently choose DNS registrants and DNS service providers based on a combination of their pricing and the ease of setup and use. Sometimes that means the DNS provider doesn't have much information about the owner other than a username and password used to identify the account. In cases of social engineering attacks or compromised passwords, it might be hard to reclaim the domain.

As companies grow, they should revisit their choice of provider every few months to make sure that it's capable of handling the level of security the company needs. Popular and high-profile services might be targeted by hackers with agendas -- and not every provider is capable of handling the heat that comes with popularity.

3. Make use of SSL certificates.

DNS hijacking can effectively be used to perform man-in-the-middle (MITM) attacks. In a MITM attack, the attacker diverts the user to a malicious server he controls. The malicious server then sends the user's request to the original server and sends the server's response back to the user. This setup allows the attacker to steal the information being passed back and forth, inject malicious content into responses before sending them back to the user, or both.

This is one of the highest risks associated with DNS hijacking and can cause a lot of damage in the form of stolen credentials and injection of malicious content.

To arm yourself, enforce validation of SSL/TLS certificates and use certificate pinning in mobile apps and rich clients. Certificate validation means the attacker must get a certificate tied to the stolen domain before being able to carry out the MITM attack. Pinning certificates in mobile and rich clients will take this restriction even further by ensuring the attacker will need access to the pinned certificate's private keys before being able to carry out the attack. This will reduce the risk of a MITM attack, which means the DNS hijack will do much less prolonged damage.

Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
7 Old IT Things Every New InfoSec Pro Should Know
Joan Goodchild, Staff Editor,  4/20/2021
News
Cloud-Native Businesses Struggle With Security
Robert Lemos, Contributing Writer,  5/6/2021
Commentary
Defending Against Web Scraping Attacks
Rob Simon, Principal Security Consultant at TrustedSec,  5/7/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win an Amazon Gift Card! Click Here
Latest Comment: "Network congestion ahead."
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2021-27342
PUBLISHED: 2021-05-17
An authentication brute-force protection mechanism bypass in telnetd in D-Link Router model DIR-842 firmware version 3.0.2 allows a remote attacker to circumvent the anti-brute-force cool-down delay period via a timing-based side-channel attack
CVE-2021-31727
PUBLISHED: 2021-05-17
Incorrect access control in zam64.sys, zam32.sys in MalwareFox AntiMalware 2.74.0.150 where IOCTL's 0x80002014, 0x80002018 expose unrestricted disk read/write capabilities respectively. A non-privileged process can open a handle to \.\ZemanaAntiMalware, register with the driver using IOCTL 0x8000201...
CVE-2021-31728
PUBLISHED: 2021-05-17
Incorrect access control in zam64.sys, zam32.sys in MalwareFox AntiMalware 2.74.0.150 allows a non-privileged process to open a handle to \.\ZemanaAntiMalware, register itself with the driver by sending IOCTL 0x80002010, allocate executable memory using a flaw in IOCTL 0x80002040, install a hook wit...
CVE-2021-32402
PUBLISHED: 2021-05-17
Intelbras Router RF 301K Firmware 1.1.2 is vulnerable to Cross Site Request Forgery (CSRF) due to lack of validation and insecure configurations in inputs and modules.
CVE-2021-32403
PUBLISHED: 2021-05-17
Intelbras Router RF 301K Firmware 1.1.2 is vulnerable to Cross Site Request Forgery (CSRF) due to lack of security mechanisms for token protection and unsafe inputs and modules.