Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Attacks/Breaches

6/11/2009
11:14 AM
Connect Directly
Twitter
LinkedIn
RSS
E-Mail
50%
50%

Rollout: How Much Is Bot Detection Worth To You?

Damballa's appliance shows promise, but it still has a lot of ground to cover.

Gone are the days when a malware-infected system would display a silly image or corrupt itself just to annoy the user. Now we face bot armies that check in with their handlers for their next task, which could be a distributed denial-of-service attack against government systems or to capture and transmit sensitive data such as bank account information or encryption keys back to the bot owner. Cybercrime has become big business, and botnets are part of that business.

A group of appliance vendors, including Damballa, is rising to meet the challenge. Damballa's Failsafe appliance/software package aims to put bots out of business, or at least dent their capabilities. Tests showed Damballa's approach would be a good fit for large enterprises with other malware protections already in place, but it might not be the best bet for organizations that need to stretch the security budget or for those deploying anti-malware systems for the first time.

Founded in 2006 with technology developed at Georgia Tech, Damballa focuses on protecting businesses from targeted attacks. Utilizing software, global monitoring, and traffic analysis, Damballa claims its Failsafe appliance can detect malicious botnets within organizations even when those organizations have up-to-date antivirus and malware protections.

According to Damballa, 3% to 5% of enterprise network assets worldwide are infected with bot malware. By not relying on signatures like intrusion-detection and -prevention systems, Damballa claims it can detect and report on these and other zero-day malware through real-time traffic analysis.

The Failsafe v3.0 appliance is a custom-built server with four hot-swap hard drives, redundant power supplies, five network interfaces, and enough power to monitor at a minimum 10,000 nodes. The appliance is licensed per node, with a minimum purchase of 10,000 nodes priced at $100,000.

Installation is straightforward: The appliance uses a span port or network tap to see network traffic. Since the Failsafe appliance does not sit in-line, it's not a point of failure in your network architecture. VPN connectivity from the appliance to Damballa is required for remote support, upgrades, and uploading of malware samples. The server itself is a standard rack-mount unit.

Our Take
DAMBALLA FAILSAFE 3.0
At $100,000 or more, Damballa Failsafe 3.0's bot-only focus will keep it out of organizations that need comprehensive threat protection.
Despite its 3.0 version number, Damballa is a "young" product, and it shows in limited capabilities.
Damballa detects bots and warns admins, but can't stop the trouble it's found.
Once connected and racked, setup is performed through a console-based menu system that offered no unpleasant surprises in tests. After setting our management IP address and configuring a host name and other associated network settings, we were ready to log in through the Web-based management console.

Once you log in to the Web-based console, you'll see just how straightforward -- and early stage -- Failsafe really is. You don't need to do much, and there isn't much for you to do: You can change some account information, look at reports, or read help documents, and that's about all. To lose its rookie status, the Failsafe appliance must offer staff more useful features, such as the ability to remotely remediate infected systems from the appliance or provide more in-depth reporting such as the ability to report on infections by user, not just system.

Previous
1 of 2
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Edge-DRsplash-10-edge-articles
7 Old IT Things Every New InfoSec Pro Should Know
Joan Goodchild, Staff Editor,  4/20/2021
News
Cloud-Native Businesses Struggle With Security
Robert Lemos, Contributing Writer,  5/6/2021
Commentary
Defending Against Web Scraping Attacks
Rob Simon, Principal Security Consultant at TrustedSec,  5/7/2021
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
2021 Top Enterprise IT Trends
We've identified the key trends that are poised to impact the IT landscape in 2021. Find out why they're important and how they will affect you today!
Flash Poll
How Enterprises are Developing Secure Applications
How Enterprises are Developing Secure Applications
Recent breaches of third-party apps are driving many organizations to think harder about the security of their off-the-shelf software as they continue to move left in secure software development practices.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2020-16632
PUBLISHED: 2021-05-15
A XSS Vulnerability in /uploads/dede/action_search.php in DedeCMS V5.7 SP2 allows an authenticated user to execute remote arbitrary code via the keyword parameter.
CVE-2021-32073
PUBLISHED: 2021-05-15
DedeCMS V5.7 SP2 contains a CSRF vulnerability that allows a remote attacker to send a malicious request to to the web manager allowing remote code execution.
CVE-2021-33033
PUBLISHED: 2021-05-14
The Linux kernel before 5.11.14 has a use-after-free in cipso_v4_genopt in net/ipv4/cipso_ipv4.c because the CIPSO and CALIPSO refcounting for the DOI definitions is mishandled, aka CID-ad5d07f4a9cd. This leads to writing an arbitrary value.
CVE-2021-33034
PUBLISHED: 2021-05-14
In the Linux kernel before 5.12.4, net/bluetooth/hci_event.c has a use-after-free when destroying an hci_chan, aka CID-5c4c8c954409. This leads to writing an arbitrary value.
CVE-2019-25044
PUBLISHED: 2021-05-14
The block subsystem in the Linux kernel before 5.2 has a use-after-free that can lead to arbitrary code execution in the kernel context and privilege escalation, aka CID-c3e2219216c9. This is related to blk_mq_free_rqs and blk_cleanup_queue.