Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Application Security

8/23/2019
01:30 PM
50%
50%

IBM Announces Quantum Safe Encryption

Techniques too tough for quantum computing solutions will be part of public cloud and tape storage encryption.

IBM researchers have announced development of new "quantum safe" encryption techniques that they plan to deploy to the IBM Public Cloud in 2020. The techniques have also been prototyped as part of a quantum safe enterprise class tape system.

According to the announcement, the new encryption algorithms are based on algebraic lattices, a class of mathematical problems that have not yet been shown to be susceptible to quantum computing solutions. The algorithms are implemented in "Cryptographic Suite for Algebraic Lattices" (CRYSTALS), a collection based on two primitives: Kyber, a secure key encapsulation mechanism, and Dilithium, a secure digital signature algorithm.

IBM has donated the quantum safe algorithms to OpenQuantumSafe.org for developing additional open standards and has submitted them to NIST for standardization.

Read more here and here.

Dark Reading's Quick Hits delivers a brief synopsis and summary of the significance of breaking news events. For more information from the original source of the news item, please follow the link provided in this article. View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
tdsan
50%
50%
tdsan,
User Rank: Ninja
8/27/2019 | 11:44:41 AM
Would like to see a comparison of QC (IBM) and how the chinese are communicating with their satellites
There are numerous articles the Chinese have submitted where they have a working form of Quantum Computing or Quantum Cryptography where the Chinese have put together a working use case.

This would be an interesting comparison to see if IBM offers similar capabilities.

T
Why Cyber-Risk Is a C-Suite Issue
Marc Wilczek, Digital Strategist & CIO Advisor,  11/12/2019
DevSecOps: The Answer to the Cloud Security Skills Gap
Lamont Orange, Chief Information Security Officer at Netskope,  11/15/2019
Attackers' Costs Increasing as Businesses Focus on Security
Robert Lemos, Contributing Writer,  11/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Navigating the Deluge of Security Data
In this Tech Digest, Dark Reading shares the experiences of some top security practitioners as they navigate volumes of security data. We examine some examples of how enterprises can cull this data to find the clues they need.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-19071
PUBLISHED: 2019-11-18
A memory leak in the rsi_send_beacon() function in drivers/net/wireless/rsi/rsi_91x_mgmt.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering rsi_prepare_beacon() failures, aka CID-d563131ef23c.
CVE-2019-19072
PUBLISHED: 2019-11-18
A memory leak in the predicate_parse() function in kernel/trace/trace_events_filter.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption), aka CID-96c5c6e6a5b6.
CVE-2019-19073
PUBLISHED: 2019-11-18
Memory leaks in drivers/net/wireless/ath/ath9k/htc_hst.c in the Linux kernel through 5.3.11 allow attackers to cause a denial of service (memory consumption) by triggering wait_for_completion_timeout() failures. This affects the htc_config_pipe_credits() function, the htc_setup_complete() function, ...
CVE-2019-19074
PUBLISHED: 2019-11-18
A memory leak in the ath9k_wmi_cmd() function in drivers/net/wireless/ath/ath9k/wmi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption), aka CID-728c1e2a05e4.
CVE-2019-19075
PUBLISHED: 2019-11-18
A memory leak in the ca8210_probe() function in drivers/net/ieee802154/ca8210.c in the Linux kernel before 5.3.8 allows attackers to cause a denial of service (memory consumption) by triggering ca8210_get_platform_data() failures, aka CID-6402939ec86e.