Analytics

3/16/2018
10:30 AM
Hamid Karimi
Hamid Karimi
Commentary
Connect Directly
LinkedIn
RSS
E-Mail vvv
100%
0%

The Containerization of Artificial Intelligence

AI automates repetitive tasks and alleviates mundane functions that often haunt decision makers. But it's still not a sure substitute for security best practices.

Artificial intelligence (AI) holds the promise of transforming both static and dynamic security measures to drastically reduce organizational risk exposure. Turning security policies into operational code is a daunting challenge facing agile DevOps today. In the face of constantly evolving attack tools, building a preventative defense requires a large set of contextual data such as historic actuals as well as predictive analytics and advanced modeling. Even if such feat is accomplished, SecOps still needs a reactive, near real-time response based on live threat intelligence to augment it.

While AI is more hype than reality today, machine intelligence — also referred to as predictive machine learning — driven by a meta-analysis of large data sets that uses correlations and statistics, provides practical measures to reduce the need for human interference in policy decision-making.

A typical by-product of such application is the creation of models of behavior that can be shared across policy stores for baselining or policy modifications. The impact goes beyond SecOps and can provide the impetus for integration within broader DevOps. Adoption of AI can be disruptive to organizational processes and must sometimes be weighed in the context of dismantling analytics and rule-based models.

The application of AI must be constructed on the principle of shared security responsibility; based on this model, both technologists and organizational leaders (CSOs, CTOs, CIOs) will accept joint responsibility for securing the data and corporate assets because security is no longer strictly the domain of specialists and affects both operational and business fundamentals. The specter of draconian regulatory compliance such as fines articulated by the EU's General Data Protection Regulation provides an evocative forcing function.

Focus on Specifics
Instead of perceiving AI as a cure-all remedy, organizations should focus on specific areas where AI holds the promise of greater effectiveness. There are specific use cases that provide a more fertile ground for the deployment and evolution of AI: rapid expansion of cloud computing, microsegmentation, and containers offer good examples. Even in these categories, shared owners must balance the promises and perils of deploying AI by recognizing the complexity of technology while avoiding the cost of totally ignoring it.

East-west and north-south architecture of data flow has its perils as we witnessed in the recent near-meltdown of public cloud services. The historic emphasis on capacity and scaling has brought us to clever model of computing which involves many layers of abstraction. With abstraction, we have essentially removed the classic stack model and therefore adding security to it presents a serious challenge.

Furthermore, the focus away from the nuts and bolts of infrastructure to application development in isolation and insulation has given birth to the expectation that even geo-scale applications inside containers and Web-scale micro services can be independently secured while maintaining an automated and scalable middleware. Hyperscale computing, relying on millisecond availability in distributed zones, is more than an infrastructure play and increasingly relies on microsegmentation and container-based application services — a phenomenon whose long-term success depends on AI.

In the '90s, VLANs were supposed to give us protective isolation and the ability to offer a productive computing space based on roles and responsibilities. That promise had fallen far short of expectations. Microsegmentation and containers are in a way a post-computing evolution of VLANs. They have brought other benefits such as reducing pressure on firewall rules; no longer there is a need to keep track of exponentially growing rules with little visibility in situations that lead to false positives and false negatives. Although the overall attack surface is reduced, and collateral damage is partially abated, the potential for more persistent breaches are not reduced. AI tools can zero in on a smaller subset of data and create better mapping without affecting the user productivity or undermining the overlay concept of segmented computing.

It is pretty much a one-two-three punch: the organization can look at all available metadata, feed that to the AI, and then take the output of AI to predictive analytics engines and create advanced modeling of potential attacks that are either in progress or will soon commence. We are still a few years away from the implementation of another potential step: machine-to-machine learning and security measures whereby machines can observe and absorb relevant data and modify their posture to protect themselves from predicted attacks.

AI can also provide substantial value in other emerging areas such as autonomous driving. Cars are increasingly resembling computing machines with direct cloud command and control. From offline modeling based on fuzzing to real-time analysis of sensor data, we may rely on AI to reduce risks and liabilities.

Artificial intelligence is not a panacea; however, it automates repetitive tasks and alleviates mundane functions that often haunt security decision makers. Like other innovations in security, it will go through its evolutionary cycle and eventually finds its rightful place. In the meantime, there is still no sure substitute for security best practices.

Related Content:

 

Black Hat Asia returns to Singapore with hands-on technical Trainings, cutting-edge Briefings, Arsenal open-source tool demonstrations, top-tier solutions and service providers in the Business Hall. Click for information on the conference and to register.

Hamid Karimi has extensive knowledge about cybersecurity, and for the past 15 years his focus has been exclusively in the security space, covering diverse areas of cryptography, strong authentication, vulnerability management, and malware threats, as well as cloud and network ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
AnnaEverson
50%
50%
AnnaEverson,
User Rank: Strategist
3/29/2018 | 10:29:25 AM
Analys
You need more example - nothing to analyse( 
Devastating Cyberattack on Email Provider Destroys 18 Years of Data
Jai Vijayan, Freelance writer,  2/12/2019
Up to 100,000 Reported Affected in Landmark White Data Breach
Kelly Sheridan, Staff Editor, Dark Reading,  2/12/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
How Enterprises Are Attacking the Cybersecurity Problem
How Enterprises Are Attacking the Cybersecurity Problem
Data breach fears and the need to comply with regulations such as GDPR are two major drivers increased spending on security products and technologies. But other factors are contributing to the trend as well. Find out more about how enterprises are attacking the cybersecurity problem by reading our report today.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-8354
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. lsx_make_lpf in effect_i_dsp.c has an integer overflow on the result of multiplication fed into malloc. When the buffer is allocated, it is smaller than expected, leading to a heap-based buffer overflow.
CVE-2019-8355
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. In xmalloc.h, there is an integer overflow on the result of multiplication fed into the lsx_valloc macro that wraps malloc. When the buffer is allocated, it is smaller than expected, leading to a heap-based buffer overflow in channels_start in remix.c.
CVE-2019-8356
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. One of the arguments to bitrv2 in fft4g.c is not guarded, such that it can lead to write access outside of the statically declared array, aka a stack-based buffer overflow.
CVE-2019-8357
PUBLISHED: 2019-02-15
An issue was discovered in SoX 14.4.2. lsx_make_lpf in effect_i_dsp.c allows a NULL pointer dereference.
CVE-2013-2516
PUBLISHED: 2019-02-15
Vulnerability in FileUtils v0.7, Ruby Gem Fileutils <= v0.7 Command Injection vulnerability in user supplied url variable that is passed to the shell.