Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.



// // //
11:05 AM
Larry Loeb
Larry Loeb
Larry Loeb

'PowerHammer' Exploit Can Steal Computer Data Across Electrical Lines

Researchers at Ben-Gurion University have created a new exploit called 'PowerHammer' that can steal data from PCs and other systems through electrical lines.

The researchers at the Ben-Gurion University of the Negev in Israel are at it again. Previously, university researchers came up with ways to get air-gapped computers -- the ones that have no direct connection with the Internet -- to give up data through means such as noise emitted by hard drives and fans, heat emissions and other physical means.

This time, the data is leaking out the electrical line that is powering the machine.

There is the obligatory snappy moniker for the method – "PowerHammer" -- that sounds like a 1970s comic book hero.

The researchers describe the two variants of the method they propose as line level power-hammering and phase level power-hammering. Both change the power consumption of the machine, which is dependent on the CPU workload.

In the line level approach, the computer's power line is tapped to read the output data. But in the phase level attack, the data comes from measurements at the main electrical service panel. Taps can be non-invasive and the information be converted into digital form.

The attack establishes two frequencies to represent a "1" bit and a "0" bit.

The researchers obtained obtain transfer rates of 1,000 bits per second using the line level variant and 10 bits per second with the phase method. The rates were best on a PC, followed by servers and Internet of Things (IoT) devices.

Those kinds of data rates are obviously best for small amounts of data such as passwords and the like. But the researchers also came up with a 44-bit data frames that, included a preamble which would signal the start of the transmission, as well as 8 bits of CRC code at the end of the frame for error detection.

Mitigation can include monitoring power lines as well as use of power line filters.

These EMI filters are primarily designed for safety purposes, since noise generated by a device in the power network can affect other devices and cause them to malfunction. It also should be remembered that these filters work best at the 450kHz-30MHz frequency band.

The PowerHammer exploit works at frequencies lower than 24kHz, which may mean that such filters will be ineffectual.

The fundamentals of network security are being redefined -- don't get left in the dark by a DDoS attack! Join us in Austin from May 14-16 at the fifth annual Big Communications Event. There's still time to register and communications service providers get in free!

A software process that executes random workloads was also thought to serve as prevention. The random signals interfere with the transmissions of the malicious process. The main limit of this approach is that the random workloads weaken system performance and may be infeasible in some environments like real-time systems.

Along with all the previous ways of mechanically getting data out of an air-gapped computer, this is yet another one to monitor as well as to try and counter.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Current Issue
Developing and Testing an Effective Breach Response Plan
Whether or not a data breach is a disaster for the organization depends on the security team's response and that is based on how the team developed a breach response plan beforehand and if it was thoroughly tested. Inside this report, experts share how to: -understand the technical environment, -determine what types of incidents would trigger the plan, -know which stakeholders need to be notified and how to do so, -develop steps to contain the breach, collect evidence, and initiate recovery.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
PUBLISHED: 2022-12-07
Hidden functionality vulnerability in multiple Buffalo network devices allows a network-adjacent attacker with an administrative privilege to execute an arbitrary OS command. The affected products/versions are as follows: WCR-300 firmware Ver. 1.87 and earlier, WHR-HP-G300N firmware Ver. 2.00 and ea...
PUBLISHED: 2022-12-07
Authentication bypass vulnerability in multiple Buffalo network devices allows a network-adjacent attacker to bypass authentication and access the device. The affected products/versions are as follows: WCR-300 firmware Ver. 1.87 and earlier, WHR-HP-G300N firmware Ver. 2.00 and earlier, WHR-HP-GN fir...
PUBLISHED: 2022-12-07
Authentication bypass using an alternate path or channel vulnerability in bingo!CMS version1.7.4.1 and earlier allows a remote unauthenticated attacker to upload an arbitrary file. As a result, an arbitrary script may be executed and/or a file may be altered.
PUBLISHED: 2022-12-07
Improper neutralization of special elements used in an LDAP query ('LDAP Injection') vulnerability in ActiveDirectory and Sharepoint ActiveDirectory authority connectors of Apache ManifoldCF allows an attacker to manipulate the LDAP search queries (DoS, additional queries, filter manipulation) durin...
PUBLISHED: 2022-12-07
Use of hard-coded credentials vulnerability in multiple Buffalo network devices allows a network-adjacent attacker to alter?configuration settings of the device. The affected products/versions are as follows: WZR-300HP firmware Ver. 2.00 and earlier, WZR-450HP firmware Ver. 2.00 and earlier, WZR-600...