Dark Reading is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them.Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.



// // //
11:05 AM
Larry Loeb
Larry Loeb
Larry Loeb

'PowerHammer' Exploit Can Steal Computer Data Across Electrical Lines

Researchers at Ben-Gurion University have created a new exploit called 'PowerHammer' that can steal data from PCs and other systems through electrical lines.

The researchers at the Ben-Gurion University of the Negev in Israel are at it again. Previously, university researchers came up with ways to get air-gapped computers -- the ones that have no direct connection with the Internet -- to give up data through means such as noise emitted by hard drives and fans, heat emissions and other physical means.

This time, the data is leaking out the electrical line that is powering the machine.

There is the obligatory snappy moniker for the method – "PowerHammer" -- that sounds like a 1970s comic book hero.

The researchers describe the two variants of the method they propose as line level power-hammering and phase level power-hammering. Both change the power consumption of the machine, which is dependent on the CPU workload.

In the line level approach, the computer's power line is tapped to read the output data. But in the phase level attack, the data comes from measurements at the main electrical service panel. Taps can be non-invasive and the information be converted into digital form.

The attack establishes two frequencies to represent a "1" bit and a "0" bit.

The researchers obtained obtain transfer rates of 1,000 bits per second using the line level variant and 10 bits per second with the phase method. The rates were best on a PC, followed by servers and Internet of Things (IoT) devices.

Those kinds of data rates are obviously best for small amounts of data such as passwords and the like. But the researchers also came up with a 44-bit data frames that, included a preamble which would signal the start of the transmission, as well as 8 bits of CRC code at the end of the frame for error detection.

Mitigation can include monitoring power lines as well as use of power line filters.

These EMI filters are primarily designed for safety purposes, since noise generated by a device in the power network can affect other devices and cause them to malfunction. It also should be remembered that these filters work best at the 450kHz-30MHz frequency band.

The PowerHammer exploit works at frequencies lower than 24kHz, which may mean that such filters will be ineffectual.

The fundamentals of network security are being redefined -- don't get left in the dark by a DDoS attack! Join us in Austin from May 14-16 at the fifth annual Big Communications Event. There's still time to register and communications service providers get in free!

A software process that executes random workloads was also thought to serve as prevention. The random signals interfere with the transmissions of the malicious process. The main limit of this approach is that the random workloads weaken system performance and may be infeasible in some environments like real-time systems.

Along with all the previous ways of mechanically getting data out of an air-gapped computer, this is yet another one to monitor as well as to try and counter.

Related posts:

— Larry Loeb has written for many of the last century's major "dead tree" computer magazines, having been, among other things, a consulting editor for BYTE magazine and senior editor for the launch of WebWeek.

Comment  | 
Print  | 
More Insights
Newest First  |  Oldest First  |  Threaded View
I Smell a RAT! New Cybersecurity Threats for the Crypto Industry
David Trepp, Partner, IT Assurance with accounting and advisory firm BPM LLP,  7/9/2021
Attacks on Kaseya Servers Led to Ransomware in Less Than 2 Hours
Robert Lemos, Contributing Writer,  7/7/2021
It's in the Game (but It Shouldn't Be)
Tal Memran, Cybersecurity Expert, CYE,  7/9/2021
Register for Dark Reading Newsletters
White Papers
Current Issue
The 10 Most Impactful Types of Vulnerabilities for Enterprises Today
Managing system vulnerabilities is one of the old est - and most frustrating - security challenges that enterprise defenders face. Every software application and hardware device ships with intrinsic flaws - flaws that, if critical enough, attackers can exploit from anywhere in the world. It's crucial that defenders take stock of what areas of the tech stack have the most emerging, and critical, vulnerabilities they must manage. It's not just zero day vulnerabilities. Consider that CISA's Known Exploited Vulnerabilities (KEV) catalog lists vulnerabilitlies in widely used applications that are "actively exploited," and most of them are flaws that were discovered several years ago and have been fixed. There are also emerging vulnerabilities in 5G networks, cloud infrastructure, Edge applications, and firmwares to consider.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
PUBLISHED: 2023-03-27
In Delta Electronics InfraSuite Device Master versions prior to 1.0.5, an attacker could use URL decoding to retrieve system files, credentials, and bypass authentication resulting in privilege escalation.
PUBLISHED: 2023-03-27
In Delta Electronics InfraSuite Device Master versions prior to 1.0.5, an attacker could use Lua scripts, which could allow an attacker to remotely execute arbitrary code.
PUBLISHED: 2023-03-27
Delta Electronics InfraSuite Device Master versions prior to 1.0.5 contains an improper access control vulnerability in which an attacker can use the Device-Gateway service and bypass authorization, which could result in privilege escalation.
PUBLISHED: 2023-03-27
Delta Electronics InfraSuite Device Master versions prior to 1.0.5 are affected by a deserialization vulnerability targeting the Device-DataCollect service, which could allow deserialization of requests prior to authentication, resulting in remote code execution.
PUBLISHED: 2023-03-27
Heap-based Buffer Overflow in GitHub repository gpac/gpac prior to 2.4.0.