Vulnerabilities / Threats
12/29/2009
02:23 PM
50%
50%

Hacker Breaks GSM Mobile Phone Code

A German computer scientist has cracked the encryption algorithm that secures 80% of the world's mobile phones, but it's far from a practical attack.

A German computer scientist working with a team of experts has broken the code used to secure about 80% of the world's mobile phones. But the group responsible for protecting GSM communications said Tuesday the feat is a "long way from being a practical attack."

Researcher Karsten Nohl, a former graduate student at the University of Virginia, revealed his decryption methods this week at the Chaos Communication Conference in Berlin, the largest hackers conference in Europe. Nohl and a team of two dozen other experts worked for five months to crack the security algorithm that protects Global System for Mobile communications.

GSM is the world's most widely used phone technology, accounting for more than 4 billion mobile phones. To prevent eavesdropping, the technology uses an encryption algorithm called A5/1 developed by the GSM Association.

To break the code, Nohl and the other researchers used networks of computers to crunch through the trillions of mathematical possibilities. The result was the development of a code book comprising 2 TB of data that's compiled into cracking tables. The tables can be used as a kind of reverse phone book to determine the encryption key used to secure a GSM mobile phone conversation or text message.

Before the latest hack, hundreds of thousands of dollars of computer equipment was needed to break the GSM code, mostly limiting hacking to government agencies. Nohl told the conference that someone with the code book could eavesdrop on GSM communications using about $30,000 worth of computer gear, making such illegal activity possible by many more criminal organizations.

On Tuesday, a GSMA statement sent to InformtationWeek by e-mail said Nohl's work "isn't something that we take lightly at all." Nevertheless, the organization said, the hack did not present an immediate danger to GSM security.

"All in all, we consider this research, which appears to be motivated in part by commercial considerations, to be a long way from being a practical attack on GSM," the organization said.

The GSMA said in a statement that over the last few years, a number of academic papers have explained, in theory, how the A5/1 algorithm, which is more than 20 years old, could be compromised. "However, none to date have led to a practical attack capability being developed against A5/1 that can be used on live, commercial GSM networks," the group said.

One area not covered by Nohl's work, according to the GSMA, is how the GSM call would be identified and recorded from the radio interface. To do that, a hacker would need a radio receiver system and the signal processing software necessary to process the raw radio data.

"So far, this aspect of the methodology has not been explained in any detail and we strongly suspect that the teams attempting to develop an intercept capability have underestimated its practical complexity," the GSMA said.

Nevertheless, the group recognizes that A5/1 needs to be replaced, and is in the process of phasing in a new security algorithm called A5/3

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: This comment is waiting for review by our moderators.
Current Issue
The Changing Face of Identity Management
Mobility and cloud services are altering the concept of user identity. Here are some ways to keep up.
Flash Poll
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-7445
Published: 2015-10-15
The Direct Rendering Manager (DRM) subsystem in the Linux kernel through 4.x mishandles requests for Graphics Execution Manager (GEM) objects, which allows context-dependent attackers to cause a denial of service (memory consumption) via an application that processes graphics data, as demonstrated b...

CVE-2015-4948
Published: 2015-10-15
netstat in IBM AIX 5.3, 6.1, and 7.1 and VIOS 2.2.x, when a fibre channel adapter is used, allows local users to gain privileges via unspecified vectors.

CVE-2015-5660
Published: 2015-10-15
Cross-site request forgery (CSRF) vulnerability in eXtplorer before 2.1.8 allows remote attackers to hijack the authentication of arbitrary users for requests that execute PHP code.

CVE-2015-6003
Published: 2015-10-15
Directory traversal vulnerability in QNAP QTS before 4.1.4 build 0910 and 4.2.x before 4.2.0 RC2 build 0910, when AFP is enabled, allows remote attackers to read or write to arbitrary files by leveraging access to an OS X (1) user or (2) guest account.

CVE-2015-6333
Published: 2015-10-15
Cisco Application Policy Infrastructure Controller (APIC) 1.1j allows local users to gain privileges via vectors involving addition of an SSH key, aka Bug ID CSCuw46076.

Dark Reading Radio
Archived Dark Reading Radio

The cybersecurity profession struggles to retain women (figures range from 10 to 20 percent). It's particularly worrisome for an industry with a rapidly growing number of vacant positions.

So why does the shortage of women continue to be worse in security than in other IT sectors? How can men in infosec be better allies for women; and how can women be better allies for one another? What is the industry doing to fix the problem -- what's working, and what isn't?

Is this really a problem at all? Are the low numbers simply an indication that women do not want to be in cybersecurity, and is it possible that more women will never want to be in cybersecurity? How many women would we need to see in the industry to declare success?

Join Dark Reading senior editor Sara Peters and guests Angela Knox of Cloudmark, Barrett Sellers of Arbor Networks, Regina Wallace-Jones of Facebook, Steve Christey Coley of MITRE, and Chris Roosenraad of M3AAWG on Wednesday, July 13 at 1 p.m. Eastern Time to discuss all this and more.