Vulnerabilities / Threats
6/9/2009
06:06 PM
Connect Directly
RSS
E-Mail
50%
50%

Researcher: Popular Internal IP Addressing Scheme Could Leave Enterprises Vulnerable

Flaws in RFC 1918 could be exploited to gain access to enterprise networks, says Robert "RSnake" Hansen

A popular method of saving IP address space in enterprise networks could expose businesses to hackers who might use it to interrupt service or steal data, according to a well-known security researcher said.

Robert Hansen (a.k.a. "RSnake") discussed the newly discovered vulnerabilities in a blog published Saturday and in presentations in Las Vegas and Sweden last week. Hansen and other security experts advised enterprises to move swiftly to mitigate the possibility of attacks that exploit the flaws.

In a nutshell, Hansen is warning enterprises about the use of "nonroutable" IP addresses, particularly as described in the Internet Engineering Task Force's RFC 1918 standard. These addresses, sometimes called "private IP addresses," are frequently used in corporate networks to name systems and devices that are used only internally and have no need to be routed over the Internet. RFC 1918 is used widely in large enterprise networks, where an organization may need to preserve a finite number of public IP addresses.

The problem, Hansen observes, is that some enterprises and technologies use private IP addresses as a means of securing themselves -- they assume that because RFC 1918 addresses are used only internally, an external attacker would not be able to take advantage of them. But Hansen points out that the spectrum of RFC 1918 addresses is so limited that a hacker might be able to create parallel environments that also use RFC 1918, and then exploit IP address collisions between the networks to compromise the enterprise's internal environment.

In a series of scenarios, Hansen describes a variety of ways in which RFC 1918 vulnerabilities could be exploited to allow an attacker to interrupt service or gain access to a company's internal network. Some of these attacks exploit the browser's ability to retain IP addressing information in its cache, as well as virtual private network routing and addressing flaws that might allow the compromise of a business partner's or home office user's networks.

Enterprises can take steps to mitigate the threats, Hansen says. "The first three attacks rely on the fact that VPNs can be told what to route," he explains in his blog. "If the VPN can be limited to only route the IP spaces that both parties agree upon, this attack would quickly fall down, or at minimum would only be effective against the IP addresses that were allowed to be routed. All of these attacks require that the browser caches content, and that that content persists beyond the initial request.

"Additionally, most of these attacks could be thwarted by simply not using actual IP addresses, but rather fully qualified but internal domain names because this would require an attacker to have prior knowledge about the IP to DNS mapping," Hansen continues. "Also, the use of SSL/TLS on all internal devices would cause a mismatch error if the attacker attempted to cache the JavaScript over HTTPS. Removing all scripting and dynamic content from the browser is also an option, although severely limiting as well. Ultimately, most of these issues could be mitigated by simply removing persistent cache regularly, or upon the change of any routing information at the operating system level."

HD Moore, creator of Metasploit and director of security architecture for BreakingPoint Systems, says companies should consider changing the way they use RFC 1918. "The core problem is that the browser needs to have a different profile or cache for each network location," he says. "The mobile aspect of laptops and smartphones undermines any privacy or security feature based on control of an IP address or DNS name. Cache poisoning is just one method of exploiting this -- many other attacks become possible when the attacker can impersonate a trusted host."

Moore envisions a number of exploits that may emerge from Hansen's discoveries. "The most obvious example will be stored JavaScript files on internal hosts that are given trusted access to the Web browser. If an attacker can use Metasploit to replace a JavaScript source file from a trusted host with a malicious script, it may be possible to load code on their system when they connect to their home/corporate network," he says.

"The bits that require more research are identifying common Web applications deployed internally -- such as OWA and SharePoint -- enumerating common host names and IP addresses where these systems are located, and leveraging these applications to either steal data or run code on the user's system," Moore says. "An easier attack would be to embed a signed Java applet into the Web page of a trusted internal site, tricking the user into loading this code when they access the server."

Have a comment on this story? Please click "Discuss" below. If you'd like to contact Dark Reading's editors directly, send us a message. Tim Wilson is Editor in Chief and co-founder of Dark Reading.com, UBM Tech's online community for information security professionals. He is responsible for managing the site, assigning and editing content, and writing breaking news stories. Wilson has been recognized as one ... View Full Bio

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Flash Poll
Current Issue
Cartoon
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-0761
Published: 2014-08-27
The DNP3 driver in CG Automation ePAQ-9410 Substation Gateway allows remote attackers to cause a denial of service (infinite loop or process crash) via a crafted TCP packet.

CVE-2014-0762
Published: 2014-08-27
The DNP3 driver in CG Automation ePAQ-9410 Substation Gateway allows physically proximate attackers to cause a denial of service (infinite loop or process crash) via crafted input over a serial line.

CVE-2014-2380
Published: 2014-08-27
Schneider Electric Wonderware Information Server (WIS) Portal 4.0 SP1 through 5.5 uses weak encryption, which allows remote attackers to obtain sensitive information by reading a credential file.

CVE-2014-2381
Published: 2014-08-27
Schneider Electric Wonderware Information Server (WIS) Portal 4.0 SP1 through 5.5 uses weak encryption, which allows local users to obtain sensitive information by reading a credential file.

CVE-2014-3344
Published: 2014-08-27
Multiple cross-site scripting (XSS) vulnerabilities in the web framework in Cisco Transport Gateway for Smart Call Home (aka TG-SCH or Transport Gateway Installation Software) 4.0 allow remote attackers to inject arbitrary web script or HTML via unspecified parameters, aka Bug IDs CSCuq31129, CSCuq3...

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
This episode of Dark Reading Radio looks at infosec security from the big enterprise POV with interviews featuring Ron Plesco, Cyber Investigations, Intelligence & Analytics at KPMG; and Chris Inglis & Chris Bell of Securonix.