Vulnerabilities / Threats
11/11/2015
03:30 PM
Mike Paquette
Mike Paquette
Commentary
Connect Directly
Twitter
LinkedIn
RSS
E-Mail vvv
50%
50%

Machine Learning: Perception Problem? Maybe. Pipe Dream? No Way!

Guided by an organization's internal security experts,'algorithmic assistants' provide a powerful new way to find anomalies and patterns for detecting cyberthreat activity.

Machine learning has a perception problem. I recently met with a public company CEO who told me that "machine learning" has become an overused buzzword just like "big data" was a few years ago. Only it's even worse with machine learning because no one really understands what it means.

In the most common misperception, machine learning is thought to be a magic box of algorithms that you let loose on your data and they start producing nuggets of brilliant insight for you. If you apply this misperception to the use of machine learning for cybersecurity, you might think that after deploying machine learning, your security experts will be out of a job since algorithms will be doing all their important threat detection and prevention work.

[Read why Simon Crosby thinks Machine Learning Is Cybersecurity's Latest Pipe Dream.]

In Simon's commentary, he argues (three times, even) that experts are a better choice than ML/AI (Machine Learning/Artificial Intelligence) for cybersecurity. But why choose between experts and machine learning at all? A more enlightened understanding of machine learning in cybersecurity sees it as an arsenal of  "algorithmic assistants" to help the security expert automate the analysis of data by looking for helpful anomalies and patterns -- but under the direction of the security experts. 

Here's an example: A security expert doing malware research reads an article that contains an analysis of a version of the infamous Framework POS malware that exfiltrates data over the DNS protocol. Knowing what kind of security infrastructure is already in place, she thinks, "Hmm, if that exfiltration was done slowly enough on our network, I'm not sure we’d be able to detect it." Thinking a bit more, "Wow, I can really see how it could take some organizations months to detect a data breach that uses this method!"

She then configures her machine learning software to continually analyze DNS requests coming from all clients (POS and workstations) on their network, instructing the machine learning algorithms to create baselines of normal DNS request activity sent from each client, and to perform a population analysis across all clients in case some machines are already performing exfiltration when the analysis starts. The machine learning engine starts this analysis, and gives her an alert any time unusual behavior indicative of DNS "tunneling," is detected. 

In this way, our security expert has just put one "algorithmic assistant" to work for her. It never sleeps, eats, or takes vacation, and it does exactly what she told it to do! Tomorrow, she thinks, "I'll figure out a way to put another algorithmic assistant to work looking for unusual SSH sessions, another issue I've been losing sleep over."

Machine Learning Algorithmic Assistants Have Several Skills
Almost all algorithmic assistants that utilize unsupervised machine learning have several skill sets based on modern data science. They can baseline normal behavior by accurately modeling time series data (any series of data with a time stamp on it – usually log data from servers, devices, endpoints, and applications); they can identify data points that are anomalous or "outliers;" and they can score the level of anomalousness of these outliers. Generally, you'll hear this set of skills packaged up under the term "machine learning anomaly detection."

More recent developments in machine learning-based security analytics have additional capabilities; think of these as "senior algorithmic assistants" that can take the work of their subordinate assistants and perform advanced functions such as influencer analysis, correlation, causation, and even forecasting, to provide even more context for the security experts.

Perception Problem: Maybe. Pipe Dream: No!
Here's an interesting data point: In an April 2015 survey performed by Enterprise Management Associates, for the second year in a row security analytics (Advanced Security/Threat Analytics & Anomaly Detection) scored in the top ranking for perceived value when compared to total cost of ownership (TCO), beating out 15 other security technologies.

For forward-thinking security pros, this kind of security analytics, powered by machine learning, is no pipe dream – and it's so much more than just marketing spin. It's a practical way to use newer technology to automate the analysis of log data to better detect cyberthreat activity, under the direction and guidance of an organization's security experts.

Mike has more than 30 years of technology product development experience, including executive roles with several startups in the areas of consumer apps, mobile app ecosystems, and Security Information and Event Management (SIEM). Previously, he spent more than a decade in ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Security Operations and IT Operations: Finding the Path to Collaboration
A wide gulf has emerged between SOC and NOC teams that's keeping both of them from assuring the confidentiality, integrity, and availability of IT systems. Here's how experts think it should be bridged.
Flash Poll
New Best Practices for Secure App Development
New Best Practices for Secure App Development
The transition from DevOps to SecDevOps is combining with the move toward cloud computing to create new challenges - and new opportunities - for the information security team. Download this report, to learn about the new best practices for secure application development.
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2017-0290
Published: 2017-05-09
NScript in mpengine in Microsoft Malware Protection Engine with Engine Version before 1.1.13704.0, as used in Windows Defender and other products, allows remote attackers to execute arbitrary code or cause a denial of service (type confusion and application crash) via crafted JavaScript code within ...

CVE-2016-10369
Published: 2017-05-08
unixsocket.c in lxterminal through 0.3.0 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (preventing terminal launch), or possibly have other impact (bypassing terminal access control).

CVE-2016-8202
Published: 2017-05-08
A privilege escalation vulnerability in Brocade Fibre Channel SAN products running Brocade Fabric OS (FOS) releases earlier than v7.4.1d and v8.0.1b could allow an authenticated attacker to elevate the privileges of user accounts accessing the system via command line interface. With affected version...

CVE-2016-8209
Published: 2017-05-08
Improper checks for unusual or exceptional conditions in Brocade NetIron 05.8.00 and later releases up to and including 06.1.00, when the Management Module is continuously scanned on port 22, may allow attackers to cause a denial of service (crash and reload) of the management module.

CVE-2017-0890
Published: 2017-05-08
Nextcloud Server before 11.0.3 is vulnerable to an inadequate escaping leading to a XSS vulnerability in the search module. To be exploitable a user has to write or paste malicious content into the search dialogue.

Dark Reading Radio
Archived Dark Reading Radio
In past years, security researchers have discovered ways to hack cars, medical devices, automated teller machines, and many other targets. Dark Reading Executive Editor Kelly Jackson Higgins hosts researcher Samy Kamkar and Levi Gundert, vice president of threat intelligence at Recorded Future, to discuss some of 2016's most unusual and creative hacks by white hats, and what these new vulnerabilities might mean for the coming year.