Vulnerabilities / Threats

12/6/2017
11:30 AM
Connect Directly
Google+
Twitter
RSS
E-Mail
50%
50%

How the Major Intel ME Firmware Flaw Lets Attackers Get 'God Mode' on a Machine

Researchers at Black Hat Europe today revealed how a buffer overflow they discovered in the chip's firmware can be abused to take control of a machine - even when it's turned 'off.'

A recently discovered and now patched vulnerability in Intel microprocessors could be used by an attacker to burrow deep inside a machine and control processes and access data - even when a laptop, workstation, or server is powered down.

Researchers who discovered the flaw went public today at Black Hat Europe in London with details of their finding, a stack buffer overflow bug in the Intel Management Engine (ME) 11 system that's found in most Intel chips shipped since 2015. ME, which contains its own operating system, is a system efficiency feature that runs during startup and while the computer is on or asleep, and handles much of the communications between the processor and external devices.

An attacker would need physical, local access to a victim's machine to pull off the hack, which would give him or her so-called "god mode" control over the system, according to Positive Technologies security researchers Mark Ermolov and Maxim Goryachy, who found the flaw.

And although Intel issued a security advisory and update for the vulnerability on November 20, Ermolov and Goryachy argue that the fix doesn't prevent an attacker from using other vulnerabilities for the attack that Intel also patched in the recent ME update, including buffer overflows in the ME kernel (CVE-2017-5705), the Intel Server Platform Services Firmware kernel (CVE-2017-5706), and the Intel Trusted Execution Engine Firmware kernel (CVE-2017-5707).

All the attacker would have to do is convert the machine to a vulnerable version of ME and exploit one of the older vulns in it, they say. Those flaws "have been patched by Intel through its latest firmware release, but if an attacker has write access to the Management Engine region, they can downgrade to an older, vulnerable version of Management Engine and exploit a vulnerability that way," Goryachy told Dark Reading.

"Unfortunately, it's not possible to completely defend against this [buffer overflow] flaw" in the Intel ME, he says.

Intel OEMs can mitigate such attacks by turning off the manufacturer mode of the chip, he says. That way, they "make sure that a local vector attack … is not possible," notes Goryachy.

How the Attack Works

An attacker would need access to the "write" feature in ME, which is part of the SPI-flash chip that contains the firmware for ME and the BIOS, according to the researchers. He or she would then rewrite the flash and run a buffer overflow exploit, which would give him or her access to the ME.

"An attacker will have almost full control at the target machine, with access to memory, USB devices, and the network," Goryachy  says. "With this, an attacker could decrypt an encrypted hard disk of someone using Microsoft Bitlocker, or access content protected by DRM [Digital Rights Management], or intercept all activity on the PC, such as viewing what's on the screen, intercepting what's typed on the keyboard, and accessing data stored on disks."

It's up to Intel's OEMs to issue firmware updates, and Intel in its security advisory last month urged customers to check with their system OEMs for the updates. Enterprises also can use the open-source CHIPSEC utility to check for BIOS configuration errors, Goryachy says, and update to the latest version of the BIOS.

The Intel processors affected by the flaw are: 6th, 7th & 8th Generation Intel Core; Xeon E3-1200 v5 & v6 Product Family; Xeon Scalable Family; Xeon W Family; Atom C3000 Family; Apollo Lake Intel Atom E3900 series; Apollo Lake Intel Pentium; and CeleronG, N and J series.

This is the second major firmware vulnerability issue for Intel this year. In early May, the company disclosed a critical privilege-escalation bug in its Active Management Technology (AMT) firmware used in many Intel chips that affected AMT firmware versions dating back to 2010.

"Over the past 12 years, only two vulnerabilities allowing the execution of arbitrary code on Management Engine have been found," Goryachy says. "The AMT vulnerability only allows an attacker to bypass authentication. The vulnerability Positive Technologies discovered enables an attacker to insert invisible backdoors on a target machine."

Related Content:

Kelly Jackson Higgins is Executive Editor at DarkReading.com. She is an award-winning veteran technology and business journalist with more than two decades of experience in reporting and editing for various publications, including Network Computing, Secure Enterprise ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Want Your Daughter to Succeed in Cyber? Call Her John
John De Santis, CEO, HyTrust,  5/16/2018
Don't Roll the Dice When Prioritizing Vulnerability Fixes
Ericka Chickowski, Contributing Writer, Dark Reading,  5/15/2018
Why Enterprises Can't Ignore Third-Party IoT-Related Risks
Charlie Miller, Senior Vice President, The Santa Fe Group,  5/14/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: "Security through obscurity"
Current Issue
How to Cope with the IT Security Skills Shortage
Most enterprises don't have all the in-house skills they need to meet the rising threat from online attackers. Here are some tips on ways to beat the shortage.
Flash Poll
[Strategic Security Report] Navigating the Threat Intelligence Maze
[Strategic Security Report] Navigating the Threat Intelligence Maze
Most enterprises are using threat intel services, but many are still figuring out how to use the data they're collecting. In this Dark Reading survey we give you a look at what they're doing today - and where they hope to go.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-11232
PUBLISHED: 2018-05-18
The etm_setup_aux function in drivers/hwtracing/coresight/coresight-etm-perf.c in the Linux kernel before 4.10.2 allows attackers to cause a denial of service (panic) because a parameter is incorrectly used as a local variable.
CVE-2017-15855
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, the camera application triggers "user-memory-access" issue as the Camera CPP module Linux driver directly accesses the application provided buffer, which resides in u...
CVE-2018-3567
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, a buffer overflow vulnerability exists in WLAN while processing the HTT_T2H_MSG_TYPE_PEER_MAP or HTT_T2H_MSG_TYPE_PEER_UNMAP messages.
CVE-2018-3568
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, in __wlan_hdd_cfg80211_vendor_scan(), a buffer overwrite can potentially occur.
CVE-2018-5827
PUBLISHED: 2018-05-17
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel, a buffer overflow vulnerability exists in WLAN while processing an extscan hotlist event.