Risk
Guest Blog // Selected Security Content Provided By Intel
What's This?
12/13/2013
05:49 PM
Guest Blogs
Guest Blogs
Guest Blogs
50%
50%

Stronger Defense Against Malware Happens Below App Level

We need to build security solutions on strong foundations that ensure we can 'start secure' and 'run secure'

I think most of you'd agree that among the toughest challenges in fighting malware is sorting out what ought to run from what needs to be stopped. Your increasingly sophisticated adversaries hide, run 0-days, and design advanced attacks that evade common detection tools. Sadly, the adversaries will grow only more sophisticated. Future security solutions must do more to keep pace. And to successfully keep pace, we need to build security solutions on strong foundations that ensure we can "start secure" and "run secure."

"Starting secure" is crucial. At power-on and start-up phases, our system and infrastructure are at their most vulnerable because defensive systems have not been brought online to protect them. The industry has definitely made some progress here. For example, modern operating systems have helped ease deployment of secure boot capabilities -- effectively slamming shut the door on malware trying to penetrate and corrupt boot-time operations. For the highest level of protection, industry standards-based technology, such as that from Secure Boot or the Trusted Computing Group, is available today that measures each element of code executing through the boot sequence, and permits execution of that element only if it can be verified as legit. And the same capabilities that harden boot operations can be extended into new applications to help strengthen cloud security.

To improve the odds of "running secure," new capabilities in processors and popular operating can effectively increase your system's immunity to attack. New innovations build on baseline microprocessor architecture to restrict how, when, and where code can execute. For example, Intel and AMD introduced capabilities more than 10 years ago to stop code from executing in certain regions of memory reserved for data. Today, operating systems and new PC and server processors have greatly enhanced capabilities that can defeat some classes of malware associated with buffer overflow attacks. One recent enhancement from Intel comes in a capability called Intel® OS Guard, which prevents some types of privilege escalation attacks. So instead of relying solely on recognizing malware, the system itself becomes stronger and better able to resist malware.

To learn more about emerging systems and infrastructure that "run secure," look for combinations of hardware and operating systems that enable deeper system behavior monitoring at low levels of the computing stack. By taking advantage of processor technologies embedded in the silicon, the software provides something like close inspection and repair of plumbing or wiring in an apartment building, detecting and preventing malicious intent at the hardware level.

If you need the strongest possible foundation and support for your anti-malware regimen, then look below the application layer to assess what new OS and hardware capabilities can do to enhance your defenses.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
macker490
50%
50%
macker490,
User Rank: Ninja
1/14/2014 | 1:02:32 PM
re: Stronger Defense Against Malware Happens Below App Level
there are two principle rules for secure computers:
1. the O/S must not permit itself to be modified by an application program. updates must be via an authorized update system only.
2. the system owner or operator must be able to regulate what an application program is allowed to access or update.

(1) depends on the computer chip offering protected mode operation. This became standard on IBM System/360 in 1964, and to x86 with 80386 in 1985. PGP became available in 1992.
(2) depends on security software running in portected mode checking and granting access to system resources based on owner/operator specifications. RACF was added to System/360/370 in 1974. Apparmor appeared in 1998.

the first step in recovering the security debauch is in general education. people should know the general mess we have on our hands now -- is not necessary.
macker490
50%
50%
macker490,
User Rank: Ninja
12/17/2013 | 12:21:52 PM
re: Stronger Defense Against Malware Happens Below App Level
as usual, a very insightful and excellent essay!!

==>"And to successfully keep pace, we need to build security solutions on
strong foundations that ensure we can "start secure" and "run secure." "

what this means: we do not run un-authorized programming. not in an application. not in the o/s.

modern documents must be treated as executable files. as a result it will be necessary to control what a user can do when using a particular program. for example, you would not want your web browser to open and access a PeopleSoft directory -- even though you -- as the workstation operator -- have access to that resource.
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Dark Reading December Tech Digest
Experts weigh in on the pros and cons of end-user security training.
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-6477
Published: 2014-11-23
Unspecified vulnerability in the JPublisher component in Oracle Database Server 11.1.0.7, 11.2.0.3, 11.2.0.4, 12.1.0.1, and 12.1.0.2 allows remote authenticated users to affect confidentiality via unknown vectors, a different vulnerability than CVE-2014-4290, CVE-2014-4291, CVE-2014-4292, CVE-2014-4...

CVE-2014-4807
Published: 2014-11-22
Sterling Order Management in IBM Sterling Selling and Fulfillment Suite 9.3.0 before FP8 allows remote authenticated users to cause a denial of service (CPU consumption) via a '\0' character.

CVE-2014-6183
Published: 2014-11-22
IBM Security Network Protection 5.1 before 5.1.0.0 FP13, 5.1.1 before 5.1.1.0 FP8, 5.1.2 before 5.1.2.0 FP9, 5.1.2.1 before FP5, 5.2 before 5.2.0.0 FP5, and 5.3 before 5.3.0.0 FP1 on XGS devices allows remote authenticated users to execute arbitrary commands via unspecified vectors.

CVE-2014-8626
Published: 2014-11-22
Stack-based buffer overflow in the date_from_ISO8601 function in ext/xmlrpc/libxmlrpc/xmlrpc.c in PHP before 5.2.7 allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code by including a timezone field in a date, leading to improper XML-RPC encoding...

CVE-2014-8710
Published: 2014-11-22
The decompress_sigcomp_message function in epan/sigcomp-udvm.c in the SigComp UDVM dissector in Wireshark 1.10.x before 1.10.11 allows remote attackers to cause a denial of service (buffer over-read and application crash) via a crafted packet.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Now that the holiday season is about to begin both online and in stores, will this be yet another season of nonstop gifting to cybercriminals?