Perimeter
2/8/2012
11:10 PM
Taher Elgamal
Taher Elgamal
Commentary
50%
50%

How Can We Gracefully Update Crypto?

Cryptographic methods at any point in time will become weak at some point due to the advances made in computing

The recently disclosed weakness in the RSA keys found on the Web makes one rethink the strategy of how to use cryptography on a large scale.

In fact, a cryptographic algorithm can become weak or unacceptable at any point in time. What is also true is that all cryptographic methods used in practice at any point in time will become weak at some point in the future due to the advances made in computing over the years.

Since the early days in modern crypto, we knew that we would have to update the methods we use on a regular basis. Unless we use an extremely large size key -- which is not very practical, obviously -- we would need to update symmetric keys from 128- to 256 to higher values, and similarly for asymmetric keys. The experience we had a few years ago with the discovered MD5 weaknesses did not seem to change the way we look at the use of crypto.

Someday we may be able to gracefully increase key sizes without major disruptions, but what happens if an algorithm is known to be weak as was the case with MD5. Can we perhaps use a backup certificate with a different algorithm that is created at the same time and is used when the primary certificate used a weak algorithm?

Maybe someday.

Recognized in the industry as the "inventor of SSL," Dr. Taher Elgamal led the SSL efforts at Netscape. He also wrote the SSL patent and promoted SSL as the Internet security standard within standard committees and the industry. Dr. Elgamal invented several industry and government standards in data security and digital signatures area, including the DSS government standard for digital signatures. He holds a Ph.D. and M.S. in Computer Science from Stanford University.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Flash Poll
Title Partner’s Role in Perimeter Security
Title Partner’s Role in Perimeter Security
Considering how prevalent third-party attacks are, we need to ask hard questions about how partners and suppliers are safeguarding systems and data.
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2015-4231
Published: 2015-07-03
The Python interpreter in Cisco NX-OS 6.2(8a) on Nexus 7000 devices allows local users to bypass intended access restrictions and delete an arbitrary VDC's files by leveraging administrative privileges in one VDC, aka Bug ID CSCur08416.

CVE-2015-4232
Published: 2015-07-03
Cisco NX-OS 6.2(10) on Nexus and MDS 9000 devices allows local users to execute arbitrary OS commands by entering crafted tar parameters in the CLI, aka Bug ID CSCus44856.

CVE-2015-4234
Published: 2015-07-03
Cisco NX-OS 6.0(2) and 6.2(2) on Nexus devices has an improper OS configuration, which allows local users to obtain root access via unspecified input to the Python interpreter, aka Bug IDs CSCun02887, CSCur00115, and CSCur00127.

CVE-2015-4237
Published: 2015-07-03
The CLI parser in Cisco NX-OS 4.1(2)E1(1), 6.2(11b), 6.2(12), 7.2(0)ZZ(99.1), 7.2(0)ZZ(99.3), and 9.1(1)SV1(3.1.8) on Nexus devices allows local users to execute arbitrary OS commands via crafted characters in a filename, aka Bug IDs CSCuv08491, CSCuv08443, CSCuv08480, CSCuv08448, CSCuu99291, CSCuv0...

CVE-2015-4239
Published: 2015-07-03
Cisco Adaptive Security Appliance (ASA) Software 9.3(2.243) and 100.13(0.21) allows remote attackers to cause a denial of service (device reload) by sending crafted OSPFv2 packets on the local network, aka Bug ID CSCus84220.

Dark Reading Radio
Archived Dark Reading Radio
Marc Spitler, co-author of the Verizon DBIR will share some of the lesser-known but most intriguing tidbits from the massive report