Perimeter
2/8/2012
11:10 PM
Taher Elgamal
Taher Elgamal
Commentary
Connect Directly
RSS
E-Mail
50%
50%
Repost This

How Can We Gracefully Update Crypto?

Cryptographic methods at any point in time will become weak at some point due to the advances made in computing

The recently disclosed weakness in the RSA keys found on the Web makes one rethink the strategy of how to use cryptography on a large scale.

In fact, a cryptographic algorithm can become weak or unacceptable at any point in time. What is also true is that all cryptographic methods used in practice at any point in time will become weak at some point in the future due to the advances made in computing over the years.

Since the early days in modern crypto, we knew that we would have to update the methods we use on a regular basis. Unless we use an extremely large size key -- which is not very practical, obviously -- we would need to update symmetric keys from 128- to 256 to higher values, and similarly for asymmetric keys. The experience we had a few years ago with the discovered MD5 weaknesses did not seem to change the way we look at the use of crypto.

Someday we may be able to gracefully increase key sizes without major disruptions, but what happens if an algorithm is known to be weak as was the case with MD5. Can we perhaps use a backup certificate with a different algorithm that is created at the same time and is used when the primary certificate used a weak algorithm?

Maybe someday.

Recognized in the industry as the "inventor of SSL," Dr. Taher Elgamal led the SSL efforts at Netscape. He also wrote the SSL patent and promoted SSL as the Internet security standard within standard committees and the industry. Dr. Elgamal invented several industry and government standards in data security and digital signatures area, including the DSS government standard for digital signatures. He holds a Ph.D. and M.S. in Computer Science from Stanford University.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2012-0360
Published: 2014-04-23
Memory leak in Cisco IOS before 15.1(1)SY, when IKEv2 debugging is enabled, allows remote attackers to cause a denial of service (memory consumption) via crafted packets, aka Bug ID CSCtn22376.

CVE-2012-1317
Published: 2014-04-23
The multicast implementation in Cisco IOS before 15.1(1)SY allows remote attackers to cause a denial of service (Route Processor crash) by sending packets at a high rate, aka Bug ID CSCts37717.

CVE-2012-1366
Published: 2014-04-23
Cisco IOS before 15.1(1)SY on ASR 1000 devices, when Multicast Listener Discovery (MLD) tracking is enabled for IPv6, allows remote attackers to cause a denial of service (device reload) via crafted MLD packets, aka Bug ID CSCtz28544.

CVE-2012-3062
Published: 2014-04-23
Cisco IOS before 15.1(1)SY, when Multicast Listener Discovery (MLD) snooping is enabled, allows remote attackers to cause a denial of service (CPU consumption or device crash) via MLD packets on a network that contains many IPv6 hosts, aka Bug ID CSCtr88193.

CVE-2012-3918
Published: 2014-04-23
Cisco IOS before 15.3(1)T on Cisco 2900 devices, when a VWIC2-2MFT-T1/E1 card is configured for TDM/HDLC mode, allows remote attackers to cause a denial of service (serial-interface outage) via certain Frame Relay traffic, aka Bug ID CSCub13317.

Best of the Web