Risk
7/7/2009
05:48 PM
Connect Directly
Google+
LinkedIn
Twitter
RSS
E-Mail
50%
50%

Social Security Number Prediction Makes Identity Theft Easy

Posting your birthday on Facebook could help identity thieves predict your Social Security number, a new study finds.

Online information about your date of birth and place of birth could allow identity thieves to guess your Social Security number, according to a paper by two Carnegie Mellon researchers.

The paper, published on Monday in The Proceedings of the National Academy of Sciences, details the "unexpected privacy consequences" that arise when disparate data sources can be correlated.

The authors of the study, Alessandro Acquisti, an associate professor of information technology and public policy at CMU's Heinz College, and Ralph Gross, a postdoctoral researcher, demonstrate that Social Security numbers can be predicted using basic demographic data gleaned from government data sources, commercial databases, voter registration lists, or online social networks.

Knowing a person's Social Security number (SSN), name, and date of birth is typically enough to allow an identity thief to impersonate that person for the purpose of various kinds of fraud. Thus, being able to easily guess a person's SSN presents a significant security risk.

Acquisti and Gross estimate that 10 million American residents publish their birthdays in online profiles, or provide enough information for their birthdays to be inferred.

The accuracy with which SSNs can be predicted in 100 attempts varies, based on the availability of online data and on the subject's date and place of birth, from 0.08% to over 10% for some states.

Such odds may not seem particularly dangerous, but an attacker could use a computer program to guess and guess again, over and over. With 1,000 attempts, a SSN becomes as easy to crack as a 3-digit PIN. Among those born recently in small states, the researchers were able to predict SSNs with 60% accuracy after 1,000 attempts.

In their paper, Acquisti and Gross pose a hypothetical scenario in which an attacker rents a 10,000 machine botnet to apply for credit cards in the names of 18-year-old residents of West Virginia using public data. Based on various assumptions, such as the number of incorrect SSN submissions allowed before a credit card issuer blacklists a submitting IP address (3), they estimate that an identity thief could obtain credit card accounts at a rate of up to 47 per minute, or 4,000 before every machine in the botnet got blocked.

Based on an estimated street price that ranges from $1 to $40 per stolen identity, identity thieves in theory could make anywhere from $2,830 to $112,800 per hour.

As a temporary defensive strategy, the authors recommend that the Social Security Administration fully randomize the assignment of new SSNs, instead of randomizing only the first three digits, as the agency recently proposed. But, they note, such measures would not protect existing SSNs.

They also suggest that legislative defenses, such as SSN redaction requirements, won't work either.

"Industry and policy makers may need, instead, to finally reassess our perilous reliance on SSNs for authentication, and on consumers' impossible duty to protect them," the paper concludes.

Comment  | 
Print  | 
More Insights
Comments
Oldest First  |  Newest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Five Emerging Security Threats - And What You Can Learn From Them
At Black Hat USA, researchers unveiled some nasty vulnerabilities. Is your organization ready?
Flash Poll
Dark Reading Strategic Security Report: The Impact of Enterprise Data Breaches
Dark Reading Strategic Security Report: The Impact of Enterprise Data Breaches
Social engineering, ransomware, and other sophisticated exploits are leading to new IT security compromises every day. Dark Reading's 2016 Strategic Security Survey polled 300 IT and security professionals to get information on breach incidents, the fallout they caused, and how recent events are shaping preparations for inevitable attacks in the coming year. Download this report to get a look at data from the survey and to find out what a breach might mean for your organization.
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-7445
Published: 2015-10-15
The Direct Rendering Manager (DRM) subsystem in the Linux kernel through 4.x mishandles requests for Graphics Execution Manager (GEM) objects, which allows context-dependent attackers to cause a denial of service (memory consumption) via an application that processes graphics data, as demonstrated b...

CVE-2015-4948
Published: 2015-10-15
netstat in IBM AIX 5.3, 6.1, and 7.1 and VIOS 2.2.x, when a fibre channel adapter is used, allows local users to gain privileges via unspecified vectors.

CVE-2015-5660
Published: 2015-10-15
Cross-site request forgery (CSRF) vulnerability in eXtplorer before 2.1.8 allows remote attackers to hijack the authentication of arbitrary users for requests that execute PHP code.

CVE-2015-6003
Published: 2015-10-15
Directory traversal vulnerability in QNAP QTS before 4.1.4 build 0910 and 4.2.x before 4.2.0 RC2 build 0910, when AFP is enabled, allows remote attackers to read or write to arbitrary files by leveraging access to an OS X (1) user or (2) guest account.

CVE-2015-6333
Published: 2015-10-15
Cisco Application Policy Infrastructure Controller (APIC) 1.1j allows local users to gain privileges via vectors involving addition of an SSH key, aka Bug ID CSCuw46076.

Dark Reading Radio
Archived Dark Reading Radio
Security researchers are finding that there's a growing market for the vulnerabilities they discover and persistent conundrum as to the right way to disclose them. Dark Reading editors will speak to experts -- Veracode CTO and co-founder Chris Wysopal and HackerOne co-founder and CTO Alex Rice -- about bug bounties and the expanding market for zero-day security vulnerabilities.