Risk

7/7/2009
05:48 PM
Connect Directly
Google+
LinkedIn
Twitter
RSS
E-Mail
50%
50%

Social Security Number Prediction Makes Identity Theft Easy

Posting your birthday on Facebook could help identity thieves predict your Social Security number, a new study finds.

Online information about your date of birth and place of birth could allow identity thieves to guess your Social Security number, according to a paper by two Carnegie Mellon researchers.

The paper, published on Monday in The Proceedings of the National Academy of Sciences, details the "unexpected privacy consequences" that arise when disparate data sources can be correlated.

The authors of the study, Alessandro Acquisti, an associate professor of information technology and public policy at CMU's Heinz College, and Ralph Gross, a postdoctoral researcher, demonstrate that Social Security numbers can be predicted using basic demographic data gleaned from government data sources, commercial databases, voter registration lists, or online social networks.

Knowing a person's Social Security number (SSN), name, and date of birth is typically enough to allow an identity thief to impersonate that person for the purpose of various kinds of fraud. Thus, being able to easily guess a person's SSN presents a significant security risk.

Acquisti and Gross estimate that 10 million American residents publish their birthdays in online profiles, or provide enough information for their birthdays to be inferred.

The accuracy with which SSNs can be predicted in 100 attempts varies, based on the availability of online data and on the subject's date and place of birth, from 0.08% to over 10% for some states.

Such odds may not seem particularly dangerous, but an attacker could use a computer program to guess and guess again, over and over. With 1,000 attempts, a SSN becomes as easy to crack as a 3-digit PIN. Among those born recently in small states, the researchers were able to predict SSNs with 60% accuracy after 1,000 attempts.

In their paper, Acquisti and Gross pose a hypothetical scenario in which an attacker rents a 10,000 machine botnet to apply for credit cards in the names of 18-year-old residents of West Virginia using public data. Based on various assumptions, such as the number of incorrect SSN submissions allowed before a credit card issuer blacklists a submitting IP address (3), they estimate that an identity thief could obtain credit card accounts at a rate of up to 47 per minute, or 4,000 before every machine in the botnet got blocked.

Based on an estimated street price that ranges from $1 to $40 per stolen identity, identity thieves in theory could make anywhere from $2,830 to $112,800 per hour.

As a temporary defensive strategy, the authors recommend that the Social Security Administration fully randomize the assignment of new SSNs, instead of randomizing only the first three digits, as the agency recently proposed. But, they note, such measures would not protect existing SSNs.

They also suggest that legislative defenses, such as SSN redaction requirements, won't work either.

"Industry and policy makers may need, instead, to finally reassess our perilous reliance on SSNs for authentication, and on consumers' impossible duty to protect them," the paper concludes.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
It Takes an Average of 3 to 6 Months to Fill a Cybersecurity Job
Kelly Jackson Higgins, Executive Editor at Dark Reading,  3/12/2019
New Mirai Version Targets Business IoT Devices
Dark Reading Staff 3/19/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Write a Caption, Win a Starbucks Card! Click Here
Latest Comment: LOL  Hope this one wins
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
The State of Cyber Security Incident Response
The State of Cyber Security Incident Response
Organizations are responding to new threats with new processes for detecting and mitigating them. Here's a look at how the discipline of incident response is evolving.
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-6149
PUBLISHED: 2019-03-18
An unquoted search path vulnerability was identified in Lenovo Dynamic Power Reduction Utility prior to version 2.2.2.0 that could allow a malicious user with local access to execute code with administrative privileges.
CVE-2018-15509
PUBLISHED: 2019-03-18
Five9 Agent Desktop Plus 10.0.70 has Incorrect Access Control (issue 2 of 2).
CVE-2018-20806
PUBLISHED: 2019-03-17
Phamm (aka PHP LDAP Virtual Hosting Manager) 0.6.8 allows XSS via the login page (the /public/main.php action parameter).
CVE-2019-5616
PUBLISHED: 2019-03-15
CircuitWerkes Sicon-8, a hardware device used for managing electrical devices, ships with a web-based front-end controller and implements an authentication mechanism in JavaScript that is run in the context of a user's web browser.
CVE-2018-17882
PUBLISHED: 2019-03-15
An Integer overflow vulnerability exists in the batchTransfer function of a smart contract implementation for CryptoBotsBattle (CBTB), an Ethereum token. This vulnerability could be used by an attacker to create an arbitrary amount of tokens for any user.