Risk
11/23/2008
12:00 AM
Commentary
Commentary
Commentary
50%
50%

Security and Return-Oriented Programming

You don't have to stray too far from the financial pages to know that returns of any kind aren't much to brag about these days. You could say the same thing about "return-oriented programing." In a nutshell, return-oriented programming security attacks start out like familiar attacks, in which attackers take advantage of a programming error in the target system to overwrite the runtime stack and divert program execution away from the path intended by the system's designer

You don't have to stray too far from the financial pages to know that returns of any kind aren't much to brag about these days. You could say the same thing about "return-oriented programing." In a nutshell, return-oriented programming security attacks start out like familiar attacks, in which attackers take advantage of a programming error in the target system to overwrite the runtime stack and divert program execution away from the path intended by the system's designers. But instead of injecting outside code, return-oriented programming lets attackers create any kind of computation or program by using the existing code. Sounds like fun, eh?

The term "return-oriented programming" describes how "good" instructions can be strung together to build malicious programs, which need to end with a return command. Erik Buchanan and Ryan Roemer, grad students at the University of California, San Diego, have showed that the process of building these malicious programs from good code can be automated by grouping sets of instructions into "gadgets," then abstracting much of the tedious work behind a programming language and compiler.

In a 2007 paper,  The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86) , UC San Diego's Hovav Shacham  described how return-oriented programming could be used to force computers with the x86 architecture to behave maliciously without introducing any bad code into the system. However, the attack required hand coding and relied on a quirk of the x86 design.

Now, Buchanan and Roemer have taken Shacham's work to the next level by showing that the process of building bad programs from good code using return-oriented programming can be automated, and that this vulnerability applies to RISC computer architectures--not just the x86 architecture.

"Most computer security defenses are based on the notion that preventing the introduction of malicious code is sufficient to protect a computer. This assumption is at the core of trusted computing, anti-virus software, and various defenses like Intel and AMD's no execute protections. There is a subtle fallacy in the logic, however: "Simply keeping out bad code is not sufficient to keep out bad computation," says UC San Diego professor Stefan Savage, a coauthor with Buchanan, Roemer, and Shacham of When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC Return-oriented Programming. "You can create any kind of malicious program you can imagine--Turing complete functionality," adds Shacham.

"The threat posed by return-oriented programming, across all architectures and systems, has negative implications for an entire class of security mechanisms: Those that seek to prevent malicious computation by preventing the execution of malicious code," say the authors in When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC Return-Oriented Programming. 

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
Five Emerging Security Threats - And What You Can Learn From Them
At Black Hat USA, researchers unveiled some nasty vulnerabilities. Is your organization ready?
Flash Poll
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-7445
Published: 2015-10-15
The Direct Rendering Manager (DRM) subsystem in the Linux kernel through 4.x mishandles requests for Graphics Execution Manager (GEM) objects, which allows context-dependent attackers to cause a denial of service (memory consumption) via an application that processes graphics data, as demonstrated b...

CVE-2015-4948
Published: 2015-10-15
netstat in IBM AIX 5.3, 6.1, and 7.1 and VIOS 2.2.x, when a fibre channel adapter is used, allows local users to gain privileges via unspecified vectors.

CVE-2015-5660
Published: 2015-10-15
Cross-site request forgery (CSRF) vulnerability in eXtplorer before 2.1.8 allows remote attackers to hijack the authentication of arbitrary users for requests that execute PHP code.

CVE-2015-6003
Published: 2015-10-15
Directory traversal vulnerability in QNAP QTS before 4.1.4 build 0910 and 4.2.x before 4.2.0 RC2 build 0910, when AFP is enabled, allows remote attackers to read or write to arbitrary files by leveraging access to an OS X (1) user or (2) guest account.

CVE-2015-6333
Published: 2015-10-15
Cisco Application Policy Infrastructure Controller (APIC) 1.1j allows local users to gain privileges via vectors involving addition of an SSH key, aka Bug ID CSCuw46076.

Dark Reading Radio
Archived Dark Reading Radio
Join Dark Reading community editor Marilyn Cohodas and her guest, David Shearer, (ISC)2 Chief Executive Officer, as they discuss issues that keep IT security professionals up at night, including results from the recent 2016 Black Hat Attendee Survey.