Risk
9/20/2010
04:16 PM
Connect Directly
RSS
E-Mail
50%
50%

NIST Research Could Boost Mobile Device Security

An electron spinning technique could pave the way for a new generation of wireless device signals that are difficult for enemies to intercept, according to researchers at the National Institutes of Standards and Technology.




Slideshow: Next Generation Defense Technologies
(click for larger image and for full photo gallery)
Particle physics could be the key to creating a new generation of wireless technology that would be more secure and resistant to interference than current methods, according to the National Institutes of Standards and Technology (NIST).

The research could pave the way for federal agencies like the U.S. military to create wireless devices with signals that would be difficult for enemies to intercept or scramble. If NIST research and analysis is correct, it may be possible to create an oscillator that could leverage the spin of electrons to generate microwaves for use in mobile devices.

The effect of this process could be used to create a cell-phone oscillator that enables the frequency of the devices to be changed very quickly. This would make the signals from the devices very hard for enemies to intercept or jam, making them optimal for use by the military or other defense or intelligence agencies, according to NIST.

Electron spin is a property that also can be applied to electronic circuits. The technique proposed by NIST researchers for cell phones could develop a type of wave called a "soliton," a shape-preserving wave that is already used in a variety of media, including optical fiber communications.

In theory, a soliton would be created in a layer of what NIST describes as a "multilayered magnetic sandwich." One of the sandwich layers must be magnetized perpendicular to the plane of the layers. To generate a soliton, an electric current then must be forced through a small channel in the sandwich.

Once the soliton is generated, the magnetic orientation oscillates at more than a billion times a second, which is the frequency of microwaves, according to NIST.

According to NIST, the oscillator, as predicted by researchers, would maintain a constant frequency even with variations in wave current. The result would be a steady, strong output signal that also would reduce unwanted noise.

While only mathematical research has been done so far to prove the theory, NIST researchers believe they can realize the effect in devices. They are currently seeking experimental evidence to support the theory, according to NIST.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
Partner Perspectives
What's This?
In a digital world inundated with advanced security threats, Intel Security seeks to transform how we live and work to keep our information secure. Through hardware and software development, Intel Security delivers robust solutions that integrate security into every layer of every digital device. In combining the security expertise of McAfee with the innovation, performance, and trust of Intel, this vision becomes a reality.

As we rely on technology to enhance our everyday and business life, we must too consider the security of the intellectual property and confidential data that is housed on these devices. As we increase the number of devices we use, we increase the number of gateways and opportunity for security threats. Intel Security takes the “security connected” approach to ensure that every device is secure, and that all security solutions are seamlessly integrated.
Featured Writers
White Papers
Cartoon
Current Issue
Dark Reading's October Tech Digest
Fast data analysis can stymie attacks and strengthen enterprise security. Does your team have the data smarts?
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-7407
Published: 2014-10-22
Cross-site request forgery (CSRF) vulnerability in the MRBS module for Drupal allows remote attackers to hijack the authentication of unspecified victims via unknown vectors.

CVE-2014-3675
Published: 2014-10-22
Shim allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted DHCPv6 packet.

CVE-2014-3676
Published: 2014-10-22
Heap-based buffer overflow in Shim allows remote attackers to execute arbitrary code via a crafted IPv6 address, related to the "tftp:// DHCPv6 boot option."

CVE-2014-3677
Published: 2014-10-22
Unspecified vulnerability in Shim might allow attackers to execute arbitrary code via a crafted MOK list, which triggers memory corruption.

CVE-2014-3828
Published: 2014-10-22
Multiple SQL injection vulnerabilities in Centreon 2.5.1 and Centreon Enterprise Server 2.2 allow remote attackers to execute arbitrary SQL commands via (1) the index_id parameter to views/graphs/common/makeXML_ListMetrics.php, (2) the sid parameter to views/graphs/GetXmlTree.php, (3) the session_id...

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Follow Dark Reading editors into the field as they talk with noted experts from the security world.