Risk
9/20/2010
04:16 PM
50%
50%

NIST Research Could Boost Mobile Device Security

An electron spinning technique could pave the way for a new generation of wireless device signals that are difficult for enemies to intercept, according to researchers at the National Institutes of Standards and Technology.




Slideshow: Next Generation Defense Technologies
(click for larger image and for full photo gallery)
Particle physics could be the key to creating a new generation of wireless technology that would be more secure and resistant to interference than current methods, according to the National Institutes of Standards and Technology (NIST).

The research could pave the way for federal agencies like the U.S. military to create wireless devices with signals that would be difficult for enemies to intercept or scramble. If NIST research and analysis is correct, it may be possible to create an oscillator that could leverage the spin of electrons to generate microwaves for use in mobile devices.

The effect of this process could be used to create a cell-phone oscillator that enables the frequency of the devices to be changed very quickly. This would make the signals from the devices very hard for enemies to intercept or jam, making them optimal for use by the military or other defense or intelligence agencies, according to NIST.

Electron spin is a property that also can be applied to electronic circuits. The technique proposed by NIST researchers for cell phones could develop a type of wave called a "soliton," a shape-preserving wave that is already used in a variety of media, including optical fiber communications.

In theory, a soliton would be created in a layer of what NIST describes as a "multilayered magnetic sandwich." One of the sandwich layers must be magnetized perpendicular to the plane of the layers. To generate a soliton, an electric current then must be forced through a small channel in the sandwich.

Once the soliton is generated, the magnetic orientation oscillates at more than a billion times a second, which is the frequency of microwaves, according to NIST.

According to NIST, the oscillator, as predicted by researchers, would maintain a constant frequency even with variations in wave current. The result would be a steady, strong output signal that also would reduce unwanted noise.

While only mathematical research has been done so far to prove the theory, NIST researchers believe they can realize the effect in devices. They are currently seeking experimental evidence to support the theory, according to NIST.

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Five Emerging Security Threats - And What You Can Learn From Them
At Black Hat USA, researchers unveiled some nasty vulnerabilities. Is your organization ready?
Flash Poll
Dark Reading Strategic Security Report: The Impact of Enterprise Data Breaches
Dark Reading Strategic Security Report: The Impact of Enterprise Data Breaches
Social engineering, ransomware, and other sophisticated exploits are leading to new IT security compromises every day. Dark Reading's 2016 Strategic Security Survey polled 300 IT and security professionals to get information on breach incidents, the fallout they caused, and how recent events are shaping preparations for inevitable attacks in the coming year. Download this report to get a look at data from the survey and to find out what a breach might mean for your organization.
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-7445
Published: 2015-10-15
The Direct Rendering Manager (DRM) subsystem in the Linux kernel through 4.x mishandles requests for Graphics Execution Manager (GEM) objects, which allows context-dependent attackers to cause a denial of service (memory consumption) via an application that processes graphics data, as demonstrated b...

CVE-2015-4948
Published: 2015-10-15
netstat in IBM AIX 5.3, 6.1, and 7.1 and VIOS 2.2.x, when a fibre channel adapter is used, allows local users to gain privileges via unspecified vectors.

CVE-2015-5660
Published: 2015-10-15
Cross-site request forgery (CSRF) vulnerability in eXtplorer before 2.1.8 allows remote attackers to hijack the authentication of arbitrary users for requests that execute PHP code.

CVE-2015-6003
Published: 2015-10-15
Directory traversal vulnerability in QNAP QTS before 4.1.4 build 0910 and 4.2.x before 4.2.0 RC2 build 0910, when AFP is enabled, allows remote attackers to read or write to arbitrary files by leveraging access to an OS X (1) user or (2) guest account.

CVE-2015-6333
Published: 2015-10-15
Cisco Application Policy Infrastructure Controller (APIC) 1.1j allows local users to gain privileges via vectors involving addition of an SSH key, aka Bug ID CSCuw46076.

Dark Reading Radio
Archived Dark Reading Radio
Security researchers are finding that there's a growing market for the vulnerabilities they discover and persistent conundrum as to the right way to disclose them. Dark Reading editors will speak to experts -- Veracode CTO and co-founder Chris Wysopal and HackerOne co-founder and CTO Alex Rice -- about bug bounties and the expanding market for zero-day security vulnerabilities.