Risk
9/30/2010
07:20 PM
George V. Hulme
George V. Hulme
Commentary
Connect Directly
RSS
E-Mail
50%
50%

In Software We (Can't) Trust

I can't think of more than a few attacks in the past decade that involved stolen certificates as part of the malware or exploit code. However, recent attacks, and new research highlights the increasing danger of trusting signed digital certificates.

I can't think of more than a few attacks in the past decade that involved stolen certificates as part of the malware or exploit code. However, recent attacks, and new research highlights the increasing danger of trusting signed digital certificates.While the danger of spoofed and forged certificates had always been a theoretical concern, it was Microsoft's spoofed certificates in 2001 when I first became aware of real-world attacks like this.

Today, they are growing commonplace.

Consider the Adobe attacks against Reader and Acrobat that exploit flaws as well as stolen certificates. from DarkReading earlier this month:

Meanwhile, Roel Schouwenberg, senior antivirus researcher for Kaspersky Lab, studied an attack exploiting the flaw that uses a stolen digital certificate from a credit union to sign the infected PDF file -- akin to what the Stuxnet attacks did. Schouwenberg says as this technique takes off, it will result in more missed attacks as well as more false positives from security software. "I predict that the security industry will have more misses of these files that come with stolen signatures, or [have] more false positives. We could well be in this high false positives [trend] next year, which we haven't seen in a while," he says.

As Schouwenberg points out, Stuxnet also used stolen digital certificates to do its thing. The worm that allegedly targets Iran's nuclear program used two stolen digital certificates from two separate Taiwanese technology firms.

Mike Wood, researcher at anti-virus firm Sophos, gave a talk today at this years' Virus Bulletin conference (wish I was there) about the abuse of digital signatures to increase the reputation of fraudulent software, or as part of how malware protects itself.

Wood's paper, which won't be widely available until after the conference, 'Want My Autograph?': The Use and Abuse of Digital Signatures By Malware, is an interesting read on Microsoft's Authenticode Program, which requires Windows kernel-mode software 'drivers' to be digitally signed - and how they can be abused. The paper also details Web-based PKI abuse, phishing attacks with certificates as bait, and many other challenges associated with digital certificates.

Wood concludes (unsurprisingly) that anti-virus software is well positioned to fight malicious or stolen certificates. I'm sure anti-virus has its place, but much more can be done by the software companies and the Certificate Authorities that sell these certificates to ensure those in use are legitimate.

In that story (also linked above) I wrote in 2001 about the spoofed Microsoft certificates, the analyst I interviewed came to a conclusion that is just as true today as it was nearly a decade ago:

Analysts say this incident shouldn't take away from the strengths of digital certificates as a security tool, but it does point to the weakness of the digital-certificate-assignment process. Says Hurwitz Group analyst Pete Lindstrom, the initial authentication process is "the Achilles heel" of public key infrastructure.

Woods' paper, unfortunately, isn't available until after the Virus Bulletin conference is over, so I'll update this post with a link as soon as it becomes available.

For my security and technology observations throughout the day, find me on Twitter.

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Cartoon
Current Issue
Dark Reading, September 16, 2014
Malicious software is morphing to be more targeted, stealthy, and destructive. Are you prepared to stop it?
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-0993
Published: 2014-09-15
Buffer overflow in the Vcl.Graphics.TPicture.Bitmap implementation in the Visual Component Library (VCL) in Embarcadero Delphi XE6 20.0.15596.9843 and C++ Builder XE6 20.0.15596.9843 allows remote attackers to execute arbitrary code via a crafted BMP file.

CVE-2014-2375
Published: 2014-09-15
Ecava IntegraXor SCADA Server Stable 4.1.4360 and earlier and Beta 4.1.4392 and earlier allows remote attackers to read or write to arbitrary files, and obtain sensitive information or cause a denial of service (disk consumption), via the CSV export feature.

CVE-2014-2376
Published: 2014-09-15
SQL injection vulnerability in Ecava IntegraXor SCADA Server Stable 4.1.4360 and earlier and Beta 4.1.4392 and earlier allows remote attackers to execute arbitrary SQL commands via unspecified vectors.

CVE-2014-2377
Published: 2014-09-15
Ecava IntegraXor SCADA Server Stable 4.1.4360 and earlier and Beta 4.1.4392 and earlier allows remote attackers to discover full pathnames via an application tag.

CVE-2014-3077
Published: 2014-09-15
IBM SONAS and System Storage Storwize V7000 Unified (aka V7000U) 1.3.x and 1.4.x before 1.4.3.4 store the chkauth password in the audit log, which allows local users to obtain sensitive information by reading this log file.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
CISO Insider: An Interview with James Christiansen, Vice President, Information Risk Management, Office of the CISO, Accuvant