Risk
8/1/2013
11:09 AM
Connect Directly
LinkedIn
Twitter
Google+
RSS
E-Mail
50%
50%

Facebook Enables Secure Browsing For All Users

Facebook converts all users to HTTPS for security, says the new encryption doesn't slow down connections.

10 Facebook Features To Help You Get Ahead
10 Facebook Features To Help You Get Ahead
(click image for larger view)
Facebook has converted all users to the Hypertext Transfer Protocol Secure (HTTPS) browsing form, the social network announced.

"HTTPS protects everyone, especially when you're using Wi-Fi access points," said Chester Wisniewski, senior security adviser at Sophos. "Before, it was really easy to have your Facebook account hijacked just by logging on a Wi-Fi network. Having HTTPS enabled also protects you when you're browsing from a mobile device, which people do daily."

This means that your browser now communicates with Facebook using a secure connection. You'll notice this in the address bar where there is a lock icon and "https" rather than "http" in the Web address.

Facebook first introduced the HTTPS browsing option two years ago. Facebook recommended that users who frequently accessed the social network from public Internet access points such as coffee shops, airports and schools enable this option, though it was voluntary. In November, the social network announced it would start rolling out HTTPS for all users in North America, followed by everywhere else.

[ Do you know what to look for? Read more: How To Spot A Facebook Scam. ]

According to Scott Renfro, a software engineer at Facebook, more than a third of users enabled the feature following its introduction. HTTPS uses Transport Layer Security, formerly known as Secure Sockets Layer, and makes the communication between your browser and Facebook servers more secure, he said.

"Now that HTTPS is on by default, virtually all traffic from www.facebook.com and 80% of traffic to m.facebook.com uses a secure connection," Renfro said. "Our native apps for Android and iOS have long used HTTPS a well."

One priority for Facebook in converting all users to HTTPS was increasing the site's speed, Renfro said. Encrypted pages tend to take longer to load, which slows down performance. Facebook was able to avoid extra latency in most cases by upgrading its infrastructure and using abbreviated "handshakes," he said. "In addition to the network round trips necessary for your browser to talk to Facebook servers, HTTPS adds additional round trips for the handshake to set up the connection. A full handshake requires two additional round trips, while an abbreviated handshake requires just one additional round trip. An abbreviated handshake can only follow a successful full handshake," he said.

"For example," he continued, "if you're in Vancouver, where a round trip to Facebook's Prineville, Oregon, data center takes 20ms, then the full handshake only adds about 40ms, which probably isn't noticeable. However, if you're in Jakarta, where a round trip takes 300ms, a full handshake can add 600ms. When combined with an already slow connection, this additional latency on every request could be very noticeable and frustrating."

Other changes Facebook made include: a secure attribute for authentication cookies, which instructs the browser to only send these cookies on HTTPS requests; an insecure indicator cookie, which directs to HTTPS when no authentication cookies are present; and upgrading all apps to support HTTPS browsing.

"Turning on HTTPS by default is a dream come true, and something Facebook's traffic, network, security infrastructure, and security teams have worked on for years," Renfro said. "We're really happy with how much of Facebook's traffic is now encrypted, and we are even more excited about the future changes we're preparing to launch."

Comment  | 
Print  | 
More Insights
Register for Dark Reading Newsletters
White Papers
Flash Poll
Current Issue
Cartoon
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2013-6117
Published: 2014-07-11
Dahua DVR 2.608.0000.0 and 2.608.GV00.0 allows remote attackers to bypass authentication and obtain sensitive information including user credentials, change user passwords, clear log files, and perform other actions via a request to TCP port 37777.

CVE-2014-0174
Published: 2014-07-11
Cumin (aka MRG Management Console), as used in Red Hat Enterprise MRG 2.5, does not include the HTTPOnly flag in a Set-Cookie header for the session cookie, which makes it easier for remote attackers to obtain potentially sensitive information via script access to this cookie.

CVE-2014-3485
Published: 2014-07-11
The REST API in the ovirt-engine in oVirt, as used in Red Hat Enterprise Virtualization (rhevm) 3.4, allows remote authenticated users to read arbitrary files and have other unspecified impact via unknown vectors, related to an XML External Entity (XXE) issue.

CVE-2014-3499
Published: 2014-07-11
Docker 1.0.0 uses world-readable and world-writable permissions on the management socket, which allows local users to gain privileges via unspecified vectors.

CVE-2014-3503
Published: 2014-07-11
Apache Syncope 1.1.x before 1.1.8 uses weak random values to generate passwords, which makes it easier for remote attackers to guess the password via a brute force attack.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Marilyn Cohodas and her guests look at the evolving nature of the relationship between CIO and CSO.