Partner Perspectives  Connecting marketers to our tech communities.
4/7/2015
10:00 AM
Rishi Bhargava
Rishi Bhargava
Partner Perspectives
100%
0%

Containing Security

How to identify the appropriate security for your container-based virtual applications.

Virtual machines and containers are similar but distinct ways of virtualizing infrastructure to deploy applications. And they have similar but distinct needs for securing those applications.

Virtual machines are the most separate and secure method of virtualizing hardware, enforced by hardware. Each virtual machine is an instance of the whole operating system, providing all of the services and consuming all of the necessary resources. VMs talk to each other on the same hardware via network interfaces as if they were separate machines, and they have nothing in common except the bare hardware they run on. Hardware assists for virtualization further isolate the processor resources, physical memory, interrupt management, and data I/O between machine instances. Securing a virtual machine is like securing a physical machine. Security policies, firewalls, and intrusion detection and prevention all see each VM as a separate instance and are configured accordingly.

Containers are a hybrid between a single operating system and a virtual machine. Multiple containers run in a single instance of an operating system, but each has its own network stack, file space, and process stack. They also communicate with each other via network interfaces, but they do not yet have hardware assists for hardware-level isolation. With only one version of the operating system, the same hardware will support more containers than virtual machines -- two to five times as many or more, depending on the container requirements. However, containers can be granted additional privileges, accidentally or intentionally, that weaken the walls between containers as well as the underlying operating system.

One of the safest features of containers is running them without full root privilege. Applications running in containers should be fully functional without all of the powerful tools available as root privileges such as access to unrestricted disk, network, and process operations. This means that should some malware manage to modify itself to root level within a container, it does not have unrestricted access to the rest of the machine. Similarly, make sure that each container is spawned in its own root directory, without access to the hardware root directory. This restriction, however, is only effective if there are no privilege escalation vulnerabilities in the operating system or container base code.

Beware of Security Holes

Containers can be configured to expose and share ports and files directly with another container. This is a very useful tool for efficiently passing information between applications, but it opens up a potential security hole. A further recommendation for secure containers is to only run applications on the same machine that you would run without containers. Do not mix data types, privilege levels, or user namespaces across multiple containers on the same machine. Containers provide additional separation between applications and should be considered an additional security measure, not a replacement.

Virtualization enabled the cloud-computing revolution. The fact that these environments are isolated at the hardware level creates the perfect environment for multitenant scenarios. Sensitive workloads from two different customers can be running on the same hardware without any compliance or security compromise, keeping customers comfortable with cloud deployments.

Containers do not currently provide this level of isolation. The weaker separation between containers creates security and compliance challenges when running workloads from different customers. As a result, it is vital to understand the security implications if you are using containers for multitenant scenarios.

The increasing use of containers and other software-defined virtualization tools continues to increase the agility of data center operations. Security configuration and management now needs to match that agility, demonstrating the emerging need for software-defined security, which I will cover in more detail in the next post. 

Rishi Bhargava is co-founder and vice president, marketing for Demisto, a cybersecurity startup with the mission to make security operations "faster, leaner and smarter." Prior to founding Demisto, he was vice president and general manager of the software defined datacenter ... View Full Bio
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
Julian Assange Arrested in London
Dark Reading Staff 4/11/2019
Tips for the Aftermath of a Cyberattack
Kelly Sheridan, Staff Editor, Dark Reading,  4/17/2019
The Single Cybersecurity Question Every CISO Should Ask
Arif Kareem, CEO, ExtraHop,  4/15/2019
Register for Dark Reading Newsletters
White Papers
Video
Cartoon
Current Issue
5 Emerging Cyber Threats to Watch for in 2019
Online attackers are constantly developing new, innovative ways to break into the enterprise. This Dark Reading Tech Digest gives an in-depth look at five emerging attack trends and exploits your security team should look out for, along with helpful recommendations on how you can prevent your organization from falling victim.
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2019-11320
PUBLISHED: 2019-04-18
In Motorola CX2 1.01 and M2 1.01, users can access the router's /priv_mgt.html web page to launch telnetd, as demonstrated by the 192.168.51.1 address.
CVE-2019-11321
PUBLISHED: 2019-04-18
An issue was discovered in Motorola CX2 1.01 and M2 1.01. The router opens TCP port 8010. Users can send hnap requests to this port without authentication to obtain information such as the MAC addresses of connected client devices.
CVE-2019-11322
PUBLISHED: 2019-04-18
An issue was discovered in Motorola CX2 1.01 and M2 1.01. There is a command injection in the function startRmtAssist in hnap, which leads to remote code execution via shell metacharacters in a JSON value.
CVE-2019-8999
PUBLISHED: 2019-04-18
An XML External Entity vulnerability in the UEM Core of BlackBerry UEM version(s) earlier than 12.10.1a could allow an attacker to potentially gain read access to files on any system reachable by the UEM service account.
CVE-2018-17168
PUBLISHED: 2019-04-18
PrinterOn Enterprise 4.1.4 contains multiple Cross Site Request Forgery (CSRF) vulnerabilities in the Administration page. For example, an administrator, by following a link, can be tricked into making unwanted changes to a printer (Disable, Approve, etc).