IoT
12/14/2017
05:43 PM
Connect Directly
Twitter
LinkedIn
Google+
RSS
E-Mail
50%
50%

BlueBorne Attack Highlights Flaws in Linux, IoT Security

Bluetooth vulnerabilities let attackers control devices running Linux or any OS derived from it, putting much of the Internet of Things at risk, including popular consumer products.

Popular consumer "smart" products, including Amazon Echo, Google Home, and Samsung's Gear S3, are dangerously exposed to airborne cyberattacks conducted via Bluetooth.

Researchers at IoT security firm Armis earlier this year discovered Blueborne, a new group of airborne attacks. The vulnerabilities let attackers take full control of any device running Linux, or OS derived from Linux, putting the majority of IoT devices at risk of exposure. The researchers discussed and demonstrated their latest findings at Black Hat Europe 2017, held last week in London.

Vulnerabilities in the Bluetooth stack have been overlooked for the past decade, they explained. Bluetooth, often perceived as peripheral, could benefit attackers if they successfully break into a high-privilege device. As the researchers demonstrated, one compromised product can spread its attack over the air to other devices within Bluetooth range.

"These attacks don't require any user interaction or any authentication," said Armis head researcher Ben Seri in their presentation. Armis experts found 5.3 billion devices at risk and eight vulnerabilities, four of which were classified as critical. These flaws enable attackers to bypass and break into a device without its owner knowing what happened, he explained.

Each vulnerability across the Bluetooth stack is "a testament to the fact that no specific part is vulnerable, but Bluetooth implementations have not been audited enough," he continued. In general, these implementations are complex and unexamined.

Bluetooth has a large attack surface, Armis researcher Gregory Vishnepolsky said. When Bluetooth is enabled, a device may not be discoverable but it is always listening for incoming connections. Hackers don't need a device to be discoverable in order to break in, he noted.

Bluetooth devices transmit parts of their MAC addresses over the air. If an attacker is close enough to sniff radio between two communicating Bluetooth devices, they can get 80% of the address from a single packet and brute-force the rest. Open-source hardware tools can do this for as little as $100, he said. Attackers put these devices on networks to listen for packets.

Many OEMs use adjacent MAC addresses for wifi and Bluetooth. Wifi monitor mode detects nearby Bluetooth devices. Seri explained how L2CAP, the Bluetooth equivalent of TCP, is implemented in the kernel. Connecting to an open port doesn't require authentication, and further, many obscure quality of service features increase the amount of code -- and as a result, the attack surface.

To illustrate the vulnerability of Bluetooth, the researchers presented examples of everyday devices that can be compromised. One was the Amazon Echo, which is not equipped with expected stack overflow mitigations KASLR, stack canaries, Fortify_source, NX Bit, or Access Control. With no NX Bit, for example, an attacker can just jump to the shell code in the stack and overflow it.

The researchers did a live demo in which they hacked a Samsung S3 Gear smartwatch, which over Bluetooth hacked a Google Home, which used a Bluetooth connection to break into the Amazon Echo.

"No security mechanisms today are actually looking at Bluetooth communications or non-wifi protocols," they explained. "This needs to be fixed."

Related Content:

Kelly Sheridan is the Staff Editor at Dark Reading, where she focuses on cybersecurity news and analysis. She is a business technology journalist who previously reported for InformationWeek, where she covered Microsoft, and Insurance & Technology, where she covered financial ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
spiderdawg
100%
0%
spiderdawg,
User Rank: Apprentice
12/15/2017 | 11:20:31 AM
Controlling communication is today's power move
We certainly seem to be in the "wild west" phase of internet communication! First, we hear that millions of phony comments were posted with the Federal Communications Commission using stolen identities. Now, it appears that control of our homes and their smart contents is up for grabs!

Thanks for the wake-up call, Kelly Sheridan! Since it has widespread implications, I have posted a link to your article in my Environmental Politics collection on Google+. Search Jeff Diver and Google+ and you'll see that Collection listed. Sorry I can't link it here!
JosephJacoby
100%
0%
JosephJacoby,
User Rank: Apprentice
12/15/2017 | 5:50:03 AM
nice
nice
WebAuthn, FIDO2 Infuse Browsers, Platforms with Strong Authentication
John Fontana, Standards & Identity Analyst, Yubico,  9/19/2018
New Cold Boot Attack Gives Hackers the Keys to PCs, Macs
Kelly Sheridan, Staff Editor, Dark Reading,  9/13/2018
Mirai Hackers' Sentence Includes No Jail Time
Dark Reading Staff 9/19/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Flash Poll
The Risk Management Struggle
The Risk Management Struggle
The majority of organizations are struggling to implement a risk-based approach to security even though risk reduction has become the primary metric for measuring the effectiveness of enterprise security strategies. Read the report and get more details today!
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-11982
PUBLISHED: 2018-09-20
In Snapdragon (Mobile, Wear) in version MDM9206, MDM9607, MDM9635M, MDM9640, MDM9645, MDM9655, MSM8909W, MSM8996AU, SD 210/SD 212/SD 205, SD 410/12, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 810, SD 820, SD 835, Snapdragon_High_Med_2016, a double free of...
CVE-2018-5837
PUBLISHED: 2018-09-20
In Snapdragon (Automobile, Mobile, Wear) in version IPQ8074, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6574AU, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 625, SD 820A, SD 835, SD 845, SD 850, SDA660, SDM429, SDM439, SDM630, SDM632, SDM636, SDM660, SDM710, Snapdragon_Hig...
CVE-2018-5871
PUBLISHED: 2018-09-20
In Snapdragon (Automobile, Mobile, Wear) in version MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6574AU, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 625, SD 650/52, SD 820A, SD 835, SD 845, SD 850, SDA660, SDM429, SDM439, SDM630, SDM632, SDM636, SDM660, SD...
CVE-2018-11269
PUBLISHED: 2018-09-20
In Snapdragon (Automobile, Mobile, Wear) in version MDM9206, MDM9607, MDM9635M, MDM9640, MDM9645, MDM9650, MDM9655, MSM8909W, MSM8996AU, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 625, SD 650/52, SD 810, SD 820, SD 820A, SD 835, SD 845, SD 850, SDA660, SDM429, SDM439, SDM630, S...
CVE-2018-11277
PUBLISHED: 2018-09-20
In Snapdragon (Automobile, Mobile, Wear) in version MSM8909W, MSM8996AU, SD 210/SD 212/SD 205, SD 430, SD 450, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 810, SD 820, SD 820A, SD 835, SD 845, SDA660, the com.qualcomm.embms is a vendor package deployed in the system image which has an inadequate...