Operations // Identity & Access Management
2/4/2014
05:15 PM
Garret Grajek
Garret Grajek
Commentary
Connect Directly
LinkedIn
Google+
RSS
E-Mail
50%
50%

The Problem With Two-Factor Authentication

The failure of corporate security strategies to protect personal identity information from hackers resides more with system architecture than with authentication technology. Here's why.

For too long, enterprises have been looking for the perfect two-factor authentication. First, it was X.509, then hard tokens, then SMS, and now Push and biometrics. And still, hackers keep winning. Just look at what happened with Target, Neiman Marcus, Living Social, Snapchat, and others.

The problem isn't the two-factor authentication technology. To be more specific, it's not just the two-factor authentication. It's the full integration, which includes the storage, accessing, validation, and assertion of identity throughout the authentication process.

But don't take my word for it. The forensics on most recent hacks reveal that hackers did not break the authentication mechanism itself. Rather, they broke the integration -- the identity passing and storage. That tells me websites (cloud or enterprise-based) that demand bulletproof security need to understand how authentication (single- or two-factor) is provisioned, conducted, validated from enterprise information, and asserted to the final resource -- and ultimately how the trust is reused at other resources.

How the authentication is provisioned
By this, I mean how the ID itself is granted to the user and how the credentials are provided to the users. The authentication process (single- or two-factor) should be quantified and scrutinized for weaknesses. One of the best ways to increase security in this procedure is to remove all human interaction (think: how to remove help desk interaction). You can validate users based on enterprise data or third-party social IDs and other data sources. You can then grant users reusable two-factor authentication credentials such as an X.509 certificate, an identity card, a mobile OATH token, or just the device itself.

Ideally, the registration process should be browser-based, which enables communication to match the client's native language automatically. Too often, however, each of these functionalities is siloed (e.g., coded after the two-factor product is purchased), and this is where the hacks occur. The hackers are breaching the architecture, not the authentication mechanism.

How and where the authentication takes place
Too often the validation algorithm is hosted or housed on servers or services that are beyond an enterprise's security control. These servers and services need to be scrutinized, because it is usually much easier for a hacker to breach the actual identity collection form (web or other form) than the actual authentication mechanism itself via cross-site scripting, SQL injection, or another attack vector against the form collector. Of course, this raises a raft of additional questions. Who wrote these collection forms? Are they housed on secure, enterprise servers? Have the forms been pen tested? Were they written by an outsourced contract service or hosted on insecure servers?

How the authentication is validated from enterprise PII
Most of the recent attacks have targeted enterprise-held personally identifiable information (PII), in which two-factor authentication methods prompted the company to sync up or migrate PII to other holders. As the Snapchat breach of 4.6 million users' phone numbers demonstrated, organizations need to secure their PII with the same security they use to keep passwords and other authentication information safe. Authentication information is, by its nature, PII, and allowing other services, especially authentication services, to use this data is simply asking for trouble.

How the authenticated identity is validated
Many authentication methods were created before resources like cloud and native mobile applications existed. As a result, common authentication mechanisms, such as tokens, were designed to use dated authentication protocols, like RADIUS, for resource-to-data-store validation. This type of authentication usually assumes that there is a proxy between the resource and the user, which is not always possible in the cloud and with mobile apps. In response, enterprises have implemented hackable integration methodologies that introduce vulnerabilities in the credential collection and identity-passing processes for these new resources.

Cloud resources should be secured with cryptographically signed assertions, like SAML or WS-Fed; similar mechanisms, including cryptographically validated web services, can be used for identity passing to native mobile apps. But these mechanisms are only as good as the services that encompass the identity passing. If the authentication system is separate from the identity-passing system, your enterprise needs to ensure that this transfer process is secure each and every time.

Don't ignore user fatigue
Ideally, all systems that users access (including network, cloud, enterprise, and mobile), should be set up to conduct some sort of identity validation. But if the enterprise forces a high-friction authentication such as SMS, token, or telephony, where the user has to re-enter credentials every session, it's pretty much guaranteed that the user will find a way to circumvent the best mechanisms and/or burden the help desk with repeated account lockouts or two-factor registration requests.

To alleviate this burden, SSO is the best solution. Look at consolidating enterprise resources into mechanisms that lend themselves to portal access where a single authentication (preferably, a strong one) allows access to multiple resources. Role-based is ideal, depending on what resources a particular user should see.

Organizations that demand bulletproof security must understand that true security is not in the authentication process alone. It's only when the entire system architecture -- from provisioning and validation through asserting identity -- is addressed from a security perspective that personal information will be truly safe from attack.

Garret Grajek is a CISSP-certified security engineer with more than 20 years of experience in the information security and authentication space. As Chief Technical Officer and Chief Operating Officer for SecureAuth Corp., Garret is responsible for the company's identity ... View Full Bio

Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
<<   <   Page 4 / 4
smptpus3r
100%
0%
smptpus3r,
User Rank: Apprentice
2/4/2014 | 6:44:17 PM
Great write up
Its a great approach... look forward for new articles on the subject from the Author.
anon2405478111
50%
50%
anon2405478111,
User Rank: Apprentice
2/4/2014 | 6:01:03 PM
Duo Security
I think Duo Security's two-factor authentication may do things differently. However, I have yet to see an true expert write a review on this service, so I would definitely be interested in reading what the author has to say about it. https://www.duosecurity.com
<<   <   Page 4 / 4
Register for Dark Reading Newsletters
Partner Perspectives
What's This?
In a digital world inundated with advanced security threats, Intel Security seeks to transform how we live and work to keep our information secure. Through hardware and software development, Intel Security delivers robust solutions that integrate security into every layer of every digital device. In combining the security expertise of McAfee with the innovation, performance, and trust of Intel, this vision becomes a reality.

As we rely on technology to enhance our everyday and business life, we must too consider the security of the intellectual property and confidential data that is housed on these devices. As we increase the number of devices we use, we increase the number of gateways and opportunity for security threats. Intel Security takes the “security connected” approach to ensure that every device is secure, and that all security solutions are seamlessly integrated.
Featured Writers
White Papers
Cartoon
Current Issue
Dark Reading's October Tech Digest
Fast data analysis can stymie attacks and strengthen enterprise security. Does your team have the data smarts?
Flash Poll
Video
Slideshows
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2014-7298
Published: 2014-10-24
adsetgroups in Centrify Server Suite 2008 through 2014.1 and Centrify DirectControl 3.x through 4.2.0 on Linux and UNIX allows local users to read arbitrary files with root privileges by leveraging improperly protected setuid functionality.

CVE-2014-8346
Published: 2014-10-24
The Remote Controls feature on Samsung mobile devices does not validate the source of lock-code data received over a network, which makes it easier for remote attackers to cause a denial of service (screen locking with an arbitrary code) by triggering unexpected Find My Mobile network traffic.

CVE-2014-0619
Published: 2014-10-23
Untrusted search path vulnerability in Hamster Free ZIP Archiver 2.0.1.7 allows local users to execute arbitrary code and conduct DLL hijacking attacks via a Trojan horse dwmapi.dll that is located in the current working directory.

CVE-2014-2230
Published: 2014-10-23
Open redirect vulnerability in the header function in adclick.php in OpenX 2.8.10 and earlier allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in the (1) dest parameter to adclick.php or (2) _maxdest parameter to ck.php.

CVE-2014-7281
Published: 2014-10-23
Cross-site request forgery (CSRF) vulnerability in Shenzhen Tenda Technology Tenda A32 Router with firmware 5.07.53_CN allows remote attackers to hijack the authentication of administrators for requests that reboot the device via a request to goform/SysToolReboot.

Best of the Web
Dark Reading Radio
Archived Dark Reading Radio
Follow Dark Reading editors into the field as they talk with noted experts from the security world.