News

10/14/2016
11:30 AM
Sara Peters
Sara Peters
Slideshows
Connect Directly
Twitter
RSS
E-Mail
50%
50%

Happy 30th Birthday CFAA!

Six things we still don't know about the Computer Fraud and Abuse Act after all this time.
Previous
1 of 7
Next

(Image by Evlakhov Valeriy, via Shutterstock)

(Image by Evlakhov Valeriy, via Shutterstock)

The U.S. Computer Fraud and Abuse Act turns the stylish age of 30 years young this Sunday. Yet, it still has a mystique. After all these years and trials and tinkering, do we really know our definitive piece of American cybercrime law at all?

It’s worth snuggling up with the entire legal text some lazy Sunday morning, but to save you some time, we’ll zero in on the most problematic questions surrounding the CFAA. It all starts with a phrase that shows up in the law again and again: “intentionally accesses a protected computer without authorization, and as a result of such conduct, causes damage and loss.”

Read on to learn more about what that might and might not mean.

 

Sara Peters is Senior Editor at Dark Reading and formerly the editor-in-chief of Enterprise Efficiency. Prior that she was senior editor for the Computer Security Institute, writing and speaking about virtualization, identity management, cybersecurity law, and a myriad ... View Full Bio

Previous
1 of 7
Next
Comment  | 
Print  | 
More Insights
Comments
Newest First  |  Oldest First  |  Threaded View
White House Cybersecurity Strategy at a Crossroads
Kelly Jackson Higgins, Executive Editor at Dark Reading,  7/17/2018
Lessons from My Strange Journey into InfoSec
Lysa Myers, Security Researcher, ESET,  7/12/2018
What's Cooking With Caleb Sima
Kelly Jackson Higgins, Executive Editor at Dark Reading,  7/12/2018
Register for Dark Reading Newsletters
White Papers
Video
Cartoon Contest
Current Issue
Flash Poll
Twitter Feed
Dark Reading - Bug Report
Bug Report
Enterprise Vulnerabilities
From DHS/US-CERT's National Vulnerability Database
CVE-2018-14339
PUBLISHED: 2018-07-19
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the MMSE dissector could go into an infinite loop. This was addressed in epan/proto.c by adding offset and length validation.
CVE-2018-14340
PUBLISHED: 2018-07-19
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, dissectors that support zlib decompression could crash. This was addressed in epan/tvbuff_zlib.c by rejecting negative lengths to avoid a buffer over-read.
CVE-2018-14341
PUBLISHED: 2018-07-19
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the DICOM dissector could go into a large or infinite loop. This was addressed in epan/dissectors/packet-dcm.c by preventing an offset overflow.
CVE-2018-14342
PUBLISHED: 2018-07-19
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the BGP protocol dissector could go into a large loop. This was addressed in epan/dissectors/packet-bgp.c by validating Path Attribute lengths.
CVE-2018-14343
PUBLISHED: 2018-07-19
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the ASN.1 BER dissector could crash. This was addressed in epan/dissectors/packet-ber.c by ensuring that length values do not exceed the maximum signed integer.